
Government of India & Government of The Netherlands 
 

 

DHV CONSULTANTS &
DELFT HYDRAULICS with
HALCROW, TAHAL, CES,
ORG & JPS 

VOLUME 8  
DATA PROCESSING AND ANALYSIS 

OPERATIONAL MANUAL - PART III  

FINAL PROCESSING AND ANALYSIS 

 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

Table of Contents 
1 INTRODUCTION 1 

1.1 GENERAL 1 
2 DATA VALIDATION USING REGRESSION 2 

2.1 INTRODUCTION 2 
2.2 SIMPLE LINEAR REGRESSION 4 
2.3 MULTIPLE LINEAR REGRESSION 13 
2.4 STEPWISE REGRESSION 16 
2.5 TRANSFORMING NON LINEAR MODELS 16 
2.6 FILLING IN MISSING DATA 17 

3 DATA VALIDATION USING A HYDROLOGICAL MODEL 18 
3.1 GENERAL 18 

3.1.1 WHAT IS A HYDROLOGICAL MODEL 18 
3.1.2 OPTIMISATION, CALIBRATION, VERIFICATION AND APPLICATION 18 
3.1.3 USES OF HYDROLOGICAL RAINFALL RUNOFF MODELS 19 

3.2 THE SACRAMENTO MODEL 19 
3.2.1 OUTLINE OF MODEL COMPONENTS 19 
3.2.2 THE SEGMENT MODULE 21 
3.2.3 THE CHANNEL MODULE 27 
3.2.4 ESTIMATION OF SEGMENT PARAMETERS 29 
3.2.5 REQUIRED INPUT 41 

4 ANALYSIS OF RAINFALL DATA 67 
4.1 GENERAL 67 
4.2 CHECKING DATA HOMOGENEITY 67 
4.3 COMPUTATION OF BASIC STATISTICS 68 
4.4 ANNUAL EXCEEDANCE RAINFALL SERIES 70 
4.5 FITTING OF FREQUENCY DISTRIBUTIONS 70 
4.6 FREQUENCY AND DURATION CURVES 74 

4.6.1 FREQUENCY CURVES 74 
4.6.2 DURATION CURVES 74 

4.7 INTENSITY-FREQUENCY-DURATION ANALYSIS 77 
4.8 DEPTH-AREA-DURATION ANALYSIS 86 

5 ANALYSIS OF CLIMATIC DATA 92 
5.1 GENERAL 92 
5.2 ANALYSIS OF PAN EVAPORATION 93 

5.2.1 PANS FOR ESTIMATING OPEN WATER EVAPORATION 93 
5.2.2 EFFECTS OF MESH SCREENING 93 
5.2.3 PANS FOR ESTIMATING REFERENCE CROP EVAPOTRANSPIRATION 93 
5.2.4 PAN EVAPORATION REFERENCES 94 

5.3 ESTIMATION OF POTENTIAL EVAPOTRANSPIRATION 95 
5.3.1 GENERAL 95 
5.3.2 THE PENMAN METHOD 95 

5.4 OTHER POTENTIAL EVAPOTRANSPIRATION FORMULAE 97 
6 ANALYSIS OF WATER LEVEL DATA 98 

7 ANALYIS OF DISCHARGE DATA 99 
7.1 GENERAL 99 
7.2 COMPUTATION OF BASIC STATISTICS 100 
7.3 EMPIRICAL FREQUENCY DISTRIBUTIONS (FLOW DURATION CURVES) 100 
7.4 FITTING OF FREQUENCY DISTRIBUTIONS 103 

7.4.1 GENERAL DESCRIPTION 103 
7.4.2 FREQUENCY DISTRIBUTIONS OF EXTREMES 103 

7.5 TIME SERIES ANALYSIS 105 

Data Processing and Analysis January 2003 Page i 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

7.5.1 MOVING AVERAGES 105 
7.5.2 MASS CURVES AND RESIDUAL MASS CURVES 106 
7.5.3 RUN LENGTH AND RUN SUM CHARACTERISTICS 106 
7.5.4 STORAGE ANALYSIS 107 
7.5.5 BALANCES 107 

7.6 REGRESSION /RELATION CURVES 108 
7.7 DOUBLE MASS ANALYSIS 108 
7.8 SERIES HOMOGENEITY TESTS 108 
7.9 RAINFALL RUNOFF SIMULATION 108 

8 ANALYSIS OF WATER QUALITY DATA 109 
8.1 INTRODUCTION 109 

8.1.1 OBJECTIVES 109 
8.1.2 RELATION HYMOS AND SWDES 109 
8.1.3 SAMPLE DATA SETS 109 

8.2 VALIDATION AND SCREENING 110 
8.2.1 CONSISTENCY CHECKS 110 
8.2.2 CONTROL CHARTS 111 
8.2.3 OUTLIERS 111 
8.2.4 HANDLING OF OUTLIERS 120 
8.2.5 CENSORED DATA 120 

8.3 BASIC STATISTICS 120 
8.3.1 PROPERTIES OF THE DATA SET 120 

8.4 SUMMARY STATISTICS 122 
8.4.1 QUANTILES AND PROPORTIONS 124 
8.4.2 CONFIDENCE INTERVALS 132 

8.5 PRESENTATION 133 
8.5.1 TIME SERIES 133 
8.5.2 LONGITUDINAL PLOTS 134 
8.5.3 BOX AND WHISKERS PLOT 135 
8.5.4 STANDARDS COMPARISON 137 

8.6 TRENDS 138 
8.6.1 TYPES OF TRENDS 138 
8.6.2 ANALYSIS OF A LINEAR TREND 139 

8.7 COMPARING POPULATIONS – STEP TREND 144 
8.7.1 PAIRED DATA 145 
8.7.2 INDEPENDENT DATA 147 

9 REPORTING ON RAINFALL DATA 156 
9.1 GENERAL 156 
9.2 YEARLY REPORTS 157 

9.2.1 INTRODUCTION 158 
9.2.2 THE OBSERVATIONAL NETWORK 158 
9.2.3 DESCRIPTIVE ACCOUNT OF RAINFALL DURING THE REPORT YEAR. 158 
9.2.4 MAPS OF MONTHLY, SEASONAL AND YEARLY AREAL RAINFALL 158 
9.2.5 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 158 
9.2.6 BASIC STATISTICS FOR VARIOUS DURATION 159 
9.2.7 DESCRIPTION AND STATISTICAL SUMMARIES OF MAJOR STORMS 159 
9.2.8 DATA VALIDATION AND QUALITY 159 
9.2.9 BIBLIOGRAPHY 159 

9.3 PERIODIC REPORTS - LONG TERM STATISTICS 160 
9.3.1 FREQUENCY ANALYSIS OF RAINFALL DATA 160 

9.4 PERIODIC REPORTS ON UNUSUAL RAINFALL EVENTS 160 
10 REPORTING ON CLIMATIC DATA 161 

10.1 GENERAL 161 
10.2 YEARLY REPORTS 161 

10.2.1 INTRODUCTION 162 
10.2.2 THE OBSERVATIONAL NETWORK 162 
10.2.3 BASIC EVAPORATION STATISTICS 162 

Data Processing and Analysis January 2003 Page ii 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

10.2.4 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 163 
10.2.5 DATA VALIDATION AND QUALITY 163 
10.2.6 BIBLIOGRAPHY 163 

10.3 PERIODIC REPORTS - LONG TERM STATISTICS 163 
11 REPORTING ON STAGE DISCHARGE DATA 164 

11.1 GENERAL 164 
11.2 LAYOUT OF REPORT 164 

12 REPORTING ON DISCHARGE DATA 165 
12.1 GENERAL 165 
12.2 YEARLY REPORTS 166 

12.2.1 INTRODUCTION 166 
12.2.2 THE OBSERVATIONAL NETWORK 166 
12.2.3 DESCRIPTIVE ACCOUNT OF STREAMFLOW DURING THE REPORT 

YEAR. 167 
12.2.4 BASIC STREAMFLOW STATISTICS 167 
12.2.5 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 168 
12.2.6 DESCRIPTION AND STATISTICAL SUMMARIES OF MAJOR FLOODS 

AND DROUGHTS 168 
12.2.7 DATA VALIDATION AND QUALITY 168 
12.2.8 BIBLIOGRAPHY 168 

12.3 PERIODIC REPORTS - LONG TERM STATISTICS 169 
13 REPORTING ON SEDIMENT TRANSPORT 169 

13.1 GENERAL 169 
13.2 YEARLY REPORTS 169 

13.2.1 GENERAL 169 
13.2.2 OBSERVATIONAL NETWORK 169 
13.2.3 SEDIMENT LOADS 170 
13.2.4 TRENDS 170 

14 REPORTING ON WATER QUALITY DATA 170 
14.1 INTRODUCTION 170 
14.2 GOALS OF WATER QUALITY MONITORING 170 
14.3 COMPONENTS OF THE WATER QUALITY YEARBOOK 172 

15 REFERENCES 179 

 

ANNEXURE I: SPECIMEN FOR SURFACE WATER YEARBOOK 182 

ANNEXURE II: STATISTICAL ANALYSIS WITH REFERENCE TO RAINFALL AND 
            DISCHARGE DATA 226 

 

Data Processing and Analysis January 2003 Page iii 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

1 INTRODUCTION 

1.1 GENERAL 

The prime objective of the Hydrology Project is to develop a sustainable Hydrological Information 
System for 9 states in Peninsular India, set up by the state Surface Water and Groundwater 
Departments and by the central agencies (CWC and CGWB) with the following characteristics: 

Demand driven, i.e. output is tuned to the user needs • 

• 

• 

• 

Use of standardised equipment and adequate procedures for data collection and processing 

Computerised, comprehensive and easily accessible database 

Proper infrastructure to ensure sustainability. 

 

This Hydrological Information System provides information on the spatial and temporal characteristics 
of water quantity and quality variables/parameters describing the water resources/water use system in 
Peninsular India. The information needs to be tuned and regularly be re-tuned to the requirements of 
the decision/policy makers, designers and researchers to be able to take decisions for long term 
planning, to design or to study the water resources system at large or its components. 

This manual describes the procedures to be used to arrive at a sound operation of the Hydrological 
Information System as far as hydro-meteorological and surface water quantity and quality data are 
concerned. A similar manual is available for geo-hydrological data. This manual is divided into three 
parts: 

a) Design Manual, which provides information for the design activities to be carried out for the 
further development of the HIS   

b) Reference Manual, including references and additional information on certain topics dealt with in 
the Design Manual 

c) Field/Operation Manual, which is an instruction book describing in detail the activities to be 
carried out at various levels in the HIS, in the field and at the data processing and data storage 
centres.  

 

The manual consists of ten volumes, covering: 

1. Hydrological Information System, its structure and data user needs assessment 

2. Sampling Principles 

3. Hydro-meteorology 

4. Hydrometry 

5. Sediment transport measurements 

6. Water Quality sampling 

7. Water Quality analysis 

8. Data processing 

9. Data transfer, storage and dissemination, and 

10. SW-Protocols.    
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This Volume 8 deals with data processing and consists of an Operation Manual and a Reference 
Manual. The Operation Manual comprises 4 parts, viz: 

Part I: Data entry and primary validation 

Part II: Secondary validation 

Part III: Final processing and analysis 

Part IV: Data management 

 
This Part III deals with the final step in data processing and with data analysis and reporting. The 
procedures described in the manual are to be carried out in the Data Processing Centres to ensure 
uniformity in data processing throughout the Project Area and to arrive at high quality data. 

2 DATA VALIDATION USING REGRESSION 

2.1 INTRODUCTION 

In regression analysis a relation is made between a dependent variable Y (i.e. the one one wants to 
estimate) and one or a number of independent variables Xi. The objective(s) of establishing a 
regression model may be manifold, like: 

1. Making forecasts/predictions/estimates on Y based on data of the independent variable(s) 

2. Investigation of a functional relationship between two or more variables 

3. Filling in missing data in the Y-series  

4. Validation of Y-series 
 

In data processing at a number of occasions regression analysis is applied: 

• 

• 

• 

• 

for validation and in-filling of missing water level data a relation curve is established based on a 
polynomial relation between the observations at two water level gauging stations either or not with 
a time-shift 
for transformation of water levels into discharge series a discharge rating curve is created. The 
commonly used discharge rating curves are of a power type regression equation, where for each 
range of the independent variable (gauge reading) a set of parameters is established. 
for estimation of rainfall (or some other variable) on the grid points of a grid over the catchment as 
a weighted average of observations made at surrounding stations with the aid of kriging also falls 
into the category of regression. 

For validation of rainfall data use is made of a linear relation between observations at a base station 
and surrounding stations. The weights given to the surrounding stations is inverse distance based. 
Because the weights are not determined by some estimation error minimization criterion as is the 
case in regression analysis but rather on the geographical location of the observation stations those 
relations are not regression equations.  

In the above examples of applications of regression analysis linear as well as non-linear relations 
have been mentioned: 

a linear regression equation is an equation which is linear in its coefficients: 
 

ii2211 X........XXY βββα ++++=
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How the variables Xi behave does not matter and they may for example form an ith order polynomial; 
hence the relation between Y and X may be non-linear. 

i
i

2
2

1
1 X.....XXY βββα=  

in a non-linear regression equation the coefficients also appear as a power, like e.g.: • 

• 

• 

 

By considering a logarithmic transformation on the equation an non-linear equation as shown above 
can be brought back to a linear one. Then, the error minimisation is carried out on the logarithm rather 
than on the original values. Note that far more complex non-linear regression models can be 
considered but this is outside the scope of hydrological data processing. 

In this module at first attention will be given to linear regression equations. Dependent on the number 
of independent variables in the regression equation a further distinction is made between: 

simple linear regression, where the dependent variable is regressed on one independent 
variable, and 
multiple and stepwise linear regression: the dependent variable is regressed on more than one 
independent variable. The difference between multiple and stepwise regression is that in multiple 
linear regression all independent variables brought in the analysis will be included in the 
regression model, whereas in stepwise regression the regression equation is built up step by step 
taking those independent variables into consideration first, which reduce the error variance most; 
the entry of new independent variables is continued until the reduction in the error variance falls 
below a certain limit. In some stepwise regression tools a distinction is made between free and 
forced independent variables: a forced variable will always be entered into the equation no matter 
what error variance reduction it produces, whereas a free variable enters only if the error variance 
reduction criterion is met. 

 

The type of regression equation that is most suitable to describe the relation depends naturally on the 
variables considered and with respect to hydrology on the physics of the processes driving the 
variables. Furthermore, it also depends on the range of the data one is interested in. A non-linear 
relation may well be described by a simple linear regression equation, within a particular range of the 
variables in regression, as applies for example to annual runoff regressed on annual rainfall. In Figure 
2.1 the general nature of such a relationship is shown. 
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Figure 2.1: 
General form of relation between 
annual rainfall and runoff 
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For low rainfall amounts the relation is highly non-linear in view of the strong varying rainfall 
abstractions due to evaporation. For very high rainfalls the abstraction is constant as it has reached its 
potential level; then the rainfall-runoff relation runs parallel to a line under 45o with an offset equal to 
the potential evaporation and becomes a true linear relation. In between reaches may approximately 
be described by a linear equation. As long as the application of the relation remains within the 
observed range then there is no harm in using a linear relation, provided that the residuals distribute 
randomly about the regression equation over the range considered.  

Another application of regression, which has not been discussed previously, is for validation of 
discharge data. A regression model is developed where runoff is regressed on rainfall (when monthly 
data are considered on rainfall in the same and in the previous month). By investigating the time-wise 
behaviour of the deviations from the regression line (i.e. the residuals) an impression is obtained 
about the stationarity of the rainfall-runoff relation (note: not of the stationarity of either rainfall or 
runoff!). Provided that the rainfall data are free of observation errors any non-stationary behaviour of 
the residuals may then be explained by: 

change in the drainage characteristics of the basin, or • 

• incorrect runoff data, which in turn can be caused by: 

− errors in the water level data, and/or 

− errors the discharge rating curve 
 

Experience has shown that by applying double mass analysis on the observed and computed runoff 
(derived from rainfall) a simple but effective tool is obtained to validate the discharge data. 
(Alternatively, instead of using a regression model, also a conceptual rainfall-runoff model can be 
used but at the expense of a far larger effort.) Hence, a very important aspect of judging your 
regression model is to look carefully at the behaviour of the residuals, not only about the regression 
line as a function of X but also as a function of time. An example has been worked out on this 
application. 

2.2 SIMPLE LINEAR REGRESSION 

The most common model used in hydrology is based on the assumption of a linear relationship 
between two variables. Such models are called simple linear regression models, which have the 
following general form: 

Y = α + βX                      (2.1) 

Where:  Y    =  dependent variable, also called response variable (produced by the regression model) 

 X   = independent variable or explanatory variable, also called input, regressor, or predictor  
variable 

α, β = regression coefficients 
 

The actual observations on Y do not perfectly match with the regression equation and a residual ε is 
observed, see also Figure 2.2: 

Yi = α + βXi + ε                      (2.2) 

Hence: 

Yi -Yi = εi                             (2.3) 
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Figure 2.2: 
Explained Yi and 
unexplained parts εi of Y 
under the assumption of a 
constant error distribution  

 

 

 

 

The regression line will be established such that E[(Yi – Y)] = E[ε] = 0, i.e. that it produces unbiased 
results and further that the variance of the residual σε

2 is minimum. With respect to the residual it is 
assumed that its distribution about the regression line is normal and independent of X, hence for all 
values of X the distribution F(ε) about the regression-line is the same, see Figure 2.2. 

 
Now consider the following partitioning: 

:or][E])YŶ[(E])YY[(E

0)]YŶ([E:cesinand))YŶ(()YY(:so)YŶ()YŶ()ŶY()YY(
222

22

ε+−=−

=−ε−+ε=−−+ε=−+−=−

                      (2.4) σσσ += 22
Ŷ

2
Y ε

 

Above equation expresses: Total variance = explained variance + unexplained variance 
 
Hence, the smaller the unexplained variance (variance about regression) is, the larger the explained 
variance (or variance due to regression) will be. It also shows that the explained variance is always 
smaller than the total variance of the process being modelled. Hence the series generated by 
equation (2.1) will only provide a smoothed representation of the true process, having a variance 
which is smaller than the original, unless a random error with the characteristics of the distribution of 
the residual is added. Nevertheless, for individual generated values the estimate according to (2.1) is 
on average the best because E[ε] = 0. The root of the error variance is generally denoted as standard 
error. 
 
In the following we will discuss: 
 
• estimation of the regression coefficients 

• measure for the goodness of fit 

• confidence limits for the regression coefficients 

• confidence limits for the regression equation 

• confidence limits for the predicted values 

• application of regression to rainfall-runoff analysis 
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Estimation of the regression coefficients 

The estimators for the regression coefficients α and β , denoted by a and b respectively are 
determined by minimising Σε2 Denoting the observations on X and Y by xi and yi this implies, that for: 

                                   (2.5) M − 2
ii

2
ii

2
i )bxay()ŷy( −−∑=∑=ε∑=

to be minimum, the first derivatives of M with respect to a and b be set equal to zero:  

                     (2.6a)  0)bxa =−−−=
∂

y(2
a
M

ii∑
∂

                     (2.6b) 0bxax =−−∑−=
∂ )y(2

b
M

iii∂
 

Above equations form the so called normal equations. From this it follows for a and b: 

 
 
 
                   (2.7) bya:and −=
 
 

x
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S

)xx)(xx(
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b

XX
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ii
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=

=

Since the procedure is based on minimising Σε2, the estimators a and b for α and β are commonly 
called least squares estimators. This solution also satisfies Σε = 0 as is observed from (2.6a)  

With 2.7 the simple regression equation can also be written in the form: 

                                 (2.8) Y )XX(bYˆ −=−
 

or with the definition of the correlation coefficient r = SXY/σX.σY : 

 

                       (2.9) rY )XX(Yˆ
x

y −=−
σ

σ

 

Measure for goodness of fit 

By squaring (2.9) and taking the expected value of the squares it is easily observed by combining the 
result with (2.4) that the error variance can be written as: 

                                 (2.10) σ )r1( 22
Y

2 −= σε

Hence, the closer r2 is to 1 the smaller the error variance will be and the better the regression 
equation is in making predictions of Y given X. Therefore r2 is an appropriate measure for the quality 
of the regression fit to the observations and is generally called the coefficient of determination. 

It is stressed, though, that a high coefficient of determination is not sufficient. It is of great 
importance to investigate also the behaviour of the residual about the regression line and its 
development with time. If there is doubt about the randomness of the residual about regression then a 
possible explanation could be the existance of a non-linear relation. Possible reasons about absence 
of randomness with time have to do with changes in the relation with time as was indicated in the 
previous sub-chapter.  
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Confidence limits of the regression coefficients and model estimates 

It can be shown, that, based on the sampling distributions of the regression parameters, the following 
estimates and confidence limits hold (see e.g. Kottegoda and Rosso, 1998). 

Error variance 
An unbiased estimate of the error variance is given by: 

             (2.11) 
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Note that n-2 appears in the denominator to reflect the fact that two degrees of freedom have been 
lost in estimating (α, β) 

Regression coefficients 

A (100-α) percent confidence interval for b is found from the following confidence limits: 

 

                                 (2.12) CL ±
XX

2/1,2n S
ˆtb ε

α
σ

−−± =
 
A (100-α) percent confidence interval for a results from the following confidence limits: 
 

                     (2.13) 2
x1taCL +±=

XX

2

/1,2n Sn
σ̂εα−−±

Regression line 

A (100-α) percent confidence interval for the mean response to some input value x0 of X is given by: 

XX

2
0

2/1,2n0 S
)xx(

n
1ˆtbxaCL

−
+σ±+= εα−−±                         (2.14) 

Note that the farther away x0 is from its mean the wider the confidence interval will be because the 
last term under the root sign expands in that way. 

Prediction 

A (100-α) percent confidence interval for a predicted value Y when X is x0 follows from: 
 

XX

2
0

2/1,2n0 S
)xx(

n
11ˆtbxaCL −

++±+= −−± εα σ                (2.15) 

It is observed by comparing (2.15) with (2.14) that in (2.15) full account of the error variance is added 
to last term. Hence, these confidence limits will be substantially wider that those for the mean 
regression line. Note however, since the multiplier of the standard error is under the root sign, the 
confidence limits in (2.15) are not simply obtained by adding t-times the standard error to the 
confidence limits of the regression line. 

Example 2.1 

In Table 2.1 some 17 years of annual rainfall and runoff data of a basin are presented. Regression analysis 
will be applied to validate the runoff series as there is some doubt about the rating curves applied before 
1970. No changes took place in the drainage characteristics of the basin. 
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Rainfall Runoff Year Rainfall Runoff Year Rainfall Runoff Year 

(mm) (mm)  (mm) (mm)  (mm) (mm) 

1961 

1962 

1963 

1964 

1965 

1966 

1130 

1280 

1270 

1040 

1080 

1150 

592 

832 

768 

488 

472 

656 

1967 

1968 

1969 

1970 

1971 

1972 

1670 

1540 

990 

1190 

1520 

1370 

872 

816 

456 

780 

1090 

960 

1973 

1974 

1975 

1976 

1977 

 

1650 

1510 

1600 

1300 

1490 

1240 

1030 

1340 

870 

1060 

Table 2.1: Rainfall and runoff data (in mm) for the period 1961 to 1977  

A time series plot of the rainfall and runoff series is presented in Figure 2.3a. A simple linear regression 
equation is established for R = f(P), see Figure 2.3b. The regression equation reads:  

R = -530 + 1.025xP, with σε = 130 mm and the coefficient of determination r2 = 0.75. 

From Figure 2.3c it is observed that the trend line for the residuals runs exactly parallel to the axis of the 
independent variable (=rainfall) and is zero throughout meaning that the regression was properly 
performed mathematically. It appears, though, that the assumption of a constant error distribution is not 
fulfilled: the variation about regression clearly increases with increase in the independent variable. The time 
series plot of the residuals when subjected to a trend analysis shows a clear upward trend. This looks like a 
gradual change in the rainfall-runoff relation in the period of observation. However, as stated above, no 
changes took place in the drainage characteristics of the basin. The plot of accumulated residuals shown in 
Figure 2.3e features a distinct change in the residuals as from 1970 onward. A double mass analysis on 
the observed runoff against the runoff computed by regression on the rainfall also shows a distinct break 
around 1970, see Figure 2.3f. From this analysis it is revealed that the runoff data prior to 1970 have been 
underestimated by 20%. Accordingly, a correction was applied to the runoff. 

The corrected time series is shown in Figure 2.4a. The results of the regression analysis on the corrected 
data are presented in the Figures 2.4b to 2.4e. The regression equation now reads:  

R = -303 + 0.920xP, with σε = 88.3 mm and the coefficient of determination r2 = 0.84. It is observed that the 
coefficient of determination has increased substantially and consequently the standard error has 
decreased; its value is now over 30% less. The behaviour of the residual as a function of the dependent 
variable and as a function of time are shown in Figures 2.4c and d. Figure 2.4c shows that the variance of 
the residual is now fairly constant with X. From Figure 2.4d it is observed that no time effect is present 
anymore. In Figure 2.4e the 95% confidence limits about the regression line and of the predictions are 
shown. The computations are outlined in Table 2.2. 

 

Year X=Rainfall Y=Runoff (X-Xm)2 Yest CL1 CL2 UC1 LC1 UC2 LC2 

1 2 3 4 5 6 7 8 9 10 11 
1961 1130 740 44100 737 64 199 801 673 936 538 
1962 1280 1040 3600 875 47 194 922 827 1069 681 
1963 1270 960 4900 866 48 194 914 818 1060 671 
1964 1040 610 90000 654 78 204 732 576 858 450 
1965 1080 590 67600 691 72 201 762 619 892 489 
1966 1150 820 36100 755 61 198 816 694 953 557 
1967 1670 1090 108900 1234 84 206 1317 1150 1440 1028 
1968 1540 1020 40000 1114 62 198 1176 1052 1312 916 
1969 990 570 122500 608 87 207 695 521 815 400 
1970 1190 780 22500 792 56 196 848 736 988 596 
1971 1520 1090 32400 1096 60 198 1155 1036 1293 898 
1972 1370 960 900 958 46 194 1004 911 1152 764 
1973 1650 1240 96100 1215 80 205 1295 1135 1420 1011 
1974 1510 1030 28900 1086 58 197 1145 1028 1284 889 
1975 1600 1340 67600 1169 72 201 1241 1098 1371 968 
1976 1300 870 1600 893 46 194 940 847 1087 699 
1977 1490 1060 22500 1068 56 196 1124 1012 1264 872 

Xm 1340 SXX 790200       

Table 2.2: Example computation of confidence limits for regression analysis 
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In the computations use is made of equations (2.14) and (2.15). In Column 2 the mean of X is computed 
and the sum of Column 4 is SXX. In the Columns 6 and 7 the last term of equations (2.14) and (2.15) are 
presented. Note that tn-2,1-α/2 = 2.131 and σε = 88.3 mm. Column 6 and 7 follow from: 
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790200

)13401130(
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S
)xx(

n
11t2CL

2

XX

0
2/1,1n ==

−
++=

−
++= −− εα σ

The upper and lower confidence limits of the mean regression line then simply follow from Column 5 + 6 
and Column 5 – 6, whereas the confidence limits for the predicted value (Columns 10 and 11) are derived 
from Column 5 + 7 and Column 5 – 7. It may be observed that the width of the confidence interval is 
minimum at the mean value of the independent variable. The variation of the width with the independent 
variable is relatively strongest for the confidence limits of the mean relation. The confidence limits for the 
prediction are seen to vary little with the variation in the independent variable, since the varying part under 
the root (i.e. the last term) is seen to be small compared to 1.  
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Figure 2.3a: 
Rainfall-runoff 
record 1961-1977  
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Figure 2.3b: 
Regression fit 
Rainfall-runoff 
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Figure2.3c:  
Plot of residual 
versus versus 
rainfall 
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Figure 2.3d:  
Plot of residual 
versus time 
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Figure 2.3e:  
Plot of 
accumulated 
residual 
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Figure 2.3f:  
Double mass 
analysis 
Observed versus 
computed runoff 
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Figure 2.4a:  
Plot of rainfall 
and corrected 
runoff 
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Figure 2.4b:  
Plot of rianfall-
runoff 
regression, 
corrected runoff 
data 
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Figure 2.4c:  
Plot of residual 
versus rainfall 
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Figure 2.4d:  
Plot of residual 
versus time 
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Figure 2.4e:  
Regression line with 
confidence limits for 
the mean regression 
and predicted 
values 
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Extrapolation: 

The extrapolation of a regression equation beyond the range of X used in estimating α and β is 
discouraged for two reasons. First as can be seen from Figure 2.4e the confidence intervals on the 
regression line become wide as the distance from X is increased. Second the relation between Y and 
X may be non-linear over the entire range of X and only approximately linear for the range of X 
investigated. A typical example of this is shown in Figure 2.1. 

2.3 MULTIPLE LINEAR REGRESSION 

Often we wish to model the dependent variable as a function of several other quantities in the same 
equation. In extension to the example presented in the previous sub-chapter monthly runoff is likely to 
be dependent on the rainfall in the same month and in the previous month(s). Then the regression 
equation would read: 

R(t) = α + b1P(t) + β2P(t-1) + ….                  (2.16) 

In this section the linear model is extended to include several independent variables.  

A general linear model of the form: 

Y = β1 X1 + β2 X2 + …. βpXp + ε                  (2.17) 

Is discussed, where Y is a dependent variable, X1, X2, …. Xp are independent variables and β1, β2, 
….. βp are unknown parameters. This model is linear in the parameters βj .Note that the form (2.16) 
can always be brought to the form (2.17) with the constant α by considering the variables Y and Xi 
centered around their mean values, similar to (2.8). 

In practice n observations would be available on Y with the corresponding n observations on each of 
the p independent variables. Thus n equations can be written, one for each observation. Essentially 
we will be solving n equations for the p unknown parameters. Thus n must be equal to or greater than 
p. In practice n should be at least 3 or 4 times as large as p. The n equations then read 

                     (2.18) εβ += XY

( )11i XX − (X X = (n x p)-data matrix of the centered independent variables                 ,… 

where: Y = (n x 1)-data column vector of the centered dependent variable ( )YYi −  

)pip X−

 β = (p x 1)- column vector, containing the regression coefficients 

 ε = (n x 1)-column vector of residuals 

The residuals are conditioned by: 

E[e] = 0                     (2.19) 

Cov(e) = σε
2 I                     (2.20) 

where:  I = (n x n) diagonal matrix with diagonal elements = 1 and off-diagonal elements = 0 

σε
2 = variance of (Y|X) 
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According to the least squares principle the estimates b of β are those which minimise the residual 
sum of squares εTε. Hence: 

εTε = (Y - Xβ)T (Y-Xβ)                         (2.21) 

is differentiated with respect to b, and the resulting expression is set equal to zero. This gives: 

XTXb = XTY                    (2.22) 

called the normal equations, where β is replaced by its estimator b. Multiplying both sides with  
(XTX)-1 leads to an explicit expression for b: 

b = (XTX)-1 XTY                    (2.23) 

The properties of the estimator b of β are: 

E[b] =β                               (2.24) 

Cov(b) = σε
2(XTX)-1                   (2.25) 

By (2.21) and (2.22) the total adjusted sum of squares YTY can be partitioned into an explained part 
due to regression and an unexplained part about regression, as follows: 

YTY = bTXTY + eTe.                   (2.26) 

where: (Xb)TY = sum of squares due to regression 

            eTe. = sum of squares about regression, with ε replaced by e due to the replacement of β by b. 

In words this reads: 

Total sum of squares about the mean = regression sum of squares + residual sum of squares 

The mean squares values of the right hand side terms in (2.26) are obtained by dividing the sum of 
squares by their corresponding degrees of freedom. If b is a (p x 1)-column vector, i.e. there are p-
independent variables in regression, then the regression sum of squares has p-degrees of freedom. 
Since the total sum of squares has (n-1)-degrees of freedom (note: 1 degree of freedom is lost due to 
the estimation ofy), it follows by subtraction that the residual sum of squares has (n-1-p)-degrees of 
freedom. It can be shown that the residual mean square se

2: 

e2e  
n – 1 – p 

2
es =

 

Is an unbiased estimate of σε
2 .The estimate se of σε is the standard error of estimate. 

The analysis of variance table (ANOVA) summarises the sum of squares quantities 
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Source Sum of squares Degrees of 
freedom 

Mean squares 

Regression (b1, …., bp) 
 

Residual (e1, …., en) 

SR = bTXTY 
 

Se = eTe = YTY - bTXTY 

p 
 

n-1-p 

MSR = bTXTY/p 

4 

 

MSe = se
2 = eTe/(n-1-p) 

Total (adjusted fory) SY =YTY n-1 MSY = sY
2 = YTY/(n-1) 

Table 2.3:  Analysis of variance table (ANOVA) 

As for the simple linear regression a measure for the quality of the regression equation is the 
coefficient of determination, defined as the ratio of the explained or regression sum of squares and 
the total adjusted sum of squares.  

bTXT Y eT e  
YTY  = 1- YT Y (2.28)=2

mR

The coefficient should be adjusted for the number of independent variables in regression. Then, 
instead of the sum of squares ratio in the most rand-hand side term the mean square ratio is used. So 
with the adjustment: 

eTe (n – 1) 
  

YTY  (n – p –1) ( ) 







−
−

−−=
1pn

1nR11 2
mL                                          (2.29)==

MS1 −− 1
MS

R
Y

e2
ma

From this it is observed that Rma
2 < Rm

2 except for Rm = 1 (i.e. a perfect model) where Rm is the 
multiple correlation coefficient and Rma the adjusted multiple correlation coefficient. 

Reference is made to the annex to the HYMOS manual for statistical inference on the regression 
coefficients. 

Confidence Intervals on the Regression Line 

To place confidence limits on Y0 where Y0 = X0b it is necessary to have an estimate for the variance 

of. . Considering Cov(b) as given in (2.25) the variance Var(0Y
∧ ∧

Y 0) is given by (Draper and Smith 
1966): 

Var ( ) = s0Y
∧

e
2X0(XTX)–1 X0

T                  (2.30) 

The confidence limits for the mean regression equation are given by  

                     (2.31) VartXCL ±= )Ŷ(b 0pn,2/a10 −−±

Comments  

A common situation in which multiple regression is used is when one dependent variable and several 
independent variables are available and it is desired to find a linear model that is developed does not 
necessarily have to contain all of the independent variables. Thus the points of concern are: (1) can a 
linear model be used and (2) what independent variable should be included? 

A factor complicating the selection of the model is that in most cases the independent variables are 
not statistically independent at all but are correlated. One of the first steps that should be done in a 
regression analysis is to compute the correlation matrix.  
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Retaining variables in a regression equation that are highly correlated makes the interpretation of the 
regression coefficients difficult. Many times the sign of the regression coefficient may be the opposite 
of what is expected if the corresponding variable is highly correlated with another independent 
variable in the equation.  

A common practice in selecting a multiple regression model is to perform several regressions on a 
given set of data using different combinations of the independent variables. The regression that “best” 
fits the data is then selected. A commonly used criterion for the ”best” fit is to select the equation 
yielding the largest value of Rma

2. 

All of the variables retained in a regression should make a significant contribution to the regression 
unless there is an overriding reason (theoretical or intuitive) for retaining a non-significant variable. 
The variables retained should have physical significance. If two variables are equally significant when 
used alone, but are not both needed, the one that is easiest to obtain should be used. 

The number of coefficients estimated should not exceed 25 to 35 percent of the number of 
observations. This is a rule of thumb used to avoid “over-fitting” whereby oscillations in the equation 
may occur between observations on the independent variables.  

2.4 STEPWISE REGRESSION 

One of the most commonly used procedures for selecting the “best” regression equations is stepwise 
regression. This procedure consists of building the regression equation one variable at a time by 
adding at each step the variable that explains the largest amount of the remaining unexplained 
variation. After each step all the variables in the equation are examined for significance and discarded 
if they are no longer explaining a significant variation. Thus the first variable added is the one with the 
highest simple correlation with the dependent variable. The second variable added is the one 
explaining the largest variation in the dependent variable that remains unexplained by the first variable 
added. At this point the first variable is tested for significance and retained or discarded depending on 
the results of this test. The third variable added is the one that explains the largest portion of the 
variation that is not explained by the two variables already in the equation. The variables in the 
equation are then tested for significance. This procedure is continued until all of the variables not in 
the equation are found to be insignificant and all of the variables in the equation are significant. This is 
a very good procedure to use but care must be exercised to see that the resulting equation is rational. 

The real test of how good is the resulting regression model, depends on the ability of the model to 
predict the dependent variable for observations on the independent variables that were not used in 
estimating the regression coefficients. To make a comparison of this nature, it is necessary to 
randomly divide the data into two parts. One part of the data is then used to develop the model and 
the other part to test the model. Unfortunately, many times in hydrologic applications, there are not 
enough observations to carry out this procedures.  

2.5 TRANSFORMING NON LINEAR MODELS 

Many models are not naturally linear models but can be transformed to linear models. For example 

Y = α Xβ                    (2.32) 

is not a linear model. It can be linearized by using a logarithmatic transformation: 

lnY = ln α + β ln X                   (2.33) 

or 
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YT = αT+ βT XT                    (2.34) 

Where: YT  = ln Y         
 αT  = ln α          
 βT  = β           
 XT  = ln X          
 

Standard regression techniques can now be used to estimate αT and βT for the transformed equation 
and α and β estimated from the logarithmatic transformation. Two important points should be noted.: 

First the estimates of α and β obtained in this way will be such that  is a minimum 

and not such that  is a minimum.  

2
TiTi )ŶY( −∑

2
ii )ŶY( −∑

• 

• Second the error term on the transformed equation is additive (YT = αT + βT XT+ εT) implying that it 
is multiplicative on the original equation i.e. Y = αXβε. These errors are related εT = ln ε. The 
assumptions used in hypothesis testing and confidence intervals must now be valid for εT and the 
tests and confidence intervals made relative to the transformed model. 

 

In some situations the logarithmic transformation makes the data conform more closely to the 
regression assumptions. The normal equations for a logarithmic transformation are based on a 
constant percentage error along the regression line while the standard regression is based on a 
constant absolute error along the regression line  

2.6 FILLING IN MISSING DATA 

An important application of regression analysis is the use of a regression equation to fill in missing 
data. In Part II of Volume 8 attention has been given to fill in missing rainfall and water level data. In 
this section attention will be given to filling in missing runoff data using rainfall as input. Typically, such 
techniques are applied to time series with time intervals of a decade, a month or larger.  

Generally a regression of the type presented in equation (2.16) is applicable. Assume that the 
objective is to fill in monthly data. The regression coefficients are likely to be different for each month, 
hence the discharge in month k of year m is computed from: 

Qk,m= ak + b1kP k,m + b2kP k-1,m + se,ke                  (2.35) 

It is observed that the regression coefficients are to be determined for each month in the year. The 
last term is added to ensure that the variance of the discharge series is being preserved. It represents 
the unexplained part of the functional relationship. Omitting the random component will result in a 
series with a smaller variance, which creates an inhomogeneity in the series and certainly does affect 
the overall monthly statistics. Dependent on the application it has to be decided whether or not to 
include the random components. If, however, a single value is to be estimated the random component 
should be omitted as the best guess is to rely on the explained part of equation (2.35); E[e] = 0. Note 
that the calibration of such a model will require at least some 15 to 20 years of data, which might be 
cumbersome occasionally. 

Experience has shown that for a number of climatic zones the regression coefficients do not vary 
much from month to month, but rather vary with the wetness of the month. Two sets of parameters 
are then applied, one set for wet conditions and one for dry conditions with a rainfall threshold to 
discriminate between the two parameter sets The advantage of such a model is that less years with 
concurrent data have to be available to calibrate it, with results only slightly less than with (2.35) can 
be achieved. The use of a threshold is also justifiable from a physical point of view as the abstractions 
from rainfall basically create a non-linearity in the rainfall-runoff relationship. 
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Concurrent rainfall and runoff data should be plotted to investigate the type of relationship applies. 
One should never blindly apply a particular model. 

3 DATA VALIDATION USING A HYDROLOGICAL MODEL 

3.1 GENERAL 

3.1.1 WHAT IS A HYDROLOGICAL MODEL 

A physical or mathematical model is a simplified version of reality that is amenable to testing. 

A hydrological rainfall runoff model is a means of representing the transformation of an input of rainfall 
over a catchment area to runoff at a specified outflow point. To simplify the complex processes 
operating over the catchment and beneath its surface, the hydrology of the catchment is conceived as 
a series of interlinked processes and storages.  

Storages are considered as reservoirs for which water budgets are kept and the processes which 
control the transfer of water from one storage to the next are described mathematically by logical rules 
and equations to define, initiation, rate and cessation. Storages are allocated a total capacity and an 
actual content at any particular moment in time. 

Complex catchment processes can be simplified and represented in a wide variety of ways and a 
large number of models have been developed. The selection of a model type depends on the uses to 
which it will be put and the availability of measured information on inputs, outflows and storages. The 
data processing software HYMOS has selected and extended/adapted the Sacramento Model which 
has had previous wide use and testing. It is physically realistic, it can operate with the amount of 
information typically available and requires limited computer power. Many more sophisticated models 
exist but all are limited by availability and quality of data and for most applications there is little to be 
gained by the use of more sophisticated models. 

3.1.2 OPTIMISATION, CALIBRATION, VERIFICATION AND APPLICATION 

For a particular catchment the operation of the model depends on the selection of the value of storage 
capacities and the parameters of the linking equations. This may be done by estimation based on the 
physical properties of the catchment, e.g. soil type and impermeable area, or they may be computed 
by the process of optimisation. 

Optimisation is the means by which, using a measured input of rainfall (and evapotranspiration) and 
successive computer runs, the parameters of the model are progressively adjusted to improve the 
correspondence between the gauged outflow (Qgaug)  and the outflow simulated by the computer run 
(Qsim). Optimisation may be done by manual adjustment of parameters or by automatic optimisation. 
Optimisation makes use of quantitative measures of goodness of fit (the objective function) such as: 

 F
2n

1i
sim,tgaug,t )QQ(∑ −=

=

for the n values of the time series being optimised. In automatic optimisation the objective function (F) 
is minimised by a search through the parameter space in a defined and efficient way. The model is 
run with a given set of parameters, the objective function is calculated, the parameters are adjusted 
and the process repeated until the value of F shows no further improvement. 

The entire process of parameter estimation and optimisation using measured time series of input 
rainfall and outflow is referred to as calibration. Calibration is subject to uncertainty in simulation and 
results in disagreement between recorded and simulated output. Following may be the sources of 
uncertainities: 
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a) random or systematic errors in the input data, e.g. precipitation or evapotranspiration used to 
represent the input conditions in time and space for the catchment 

b) Random or systematic errors in recorded output data, i.e. measured discharges for comparison 
with simulated discharges 

c) Errors due to non-optimal parameter values 
d) Errors due to incomplete or biased model structure. 
 
During calibration only error source (c) is minimised, whereas the disagreement between simulated 
and recorded output is due to all four error sources. Measurement errors (a) and (b) serve as 
“background noise” and give a minimum level of disagreement below which further parameter or 
model adjustments will not improve the results. The objective of calibration is therefore to reduce error 
source (c) until it insignificant compared with the error sources (a) and (b). 

It is usual to withhold a part of the measured data from calibration. This can then be used to verify the 
performance of the model by using the calibrated parameters with the new data (without optimisation) 
to determine the objective function and goodness of fit. Verification is a means of ensuring that the 
optimised parameters are a true representation of the physical behaviour of the catchment and not 
simply a consequence of the model structure. 

The calibrated and verified model is then ready for application where the rainfall input is known but the 
outflow is unknown. 

3.1.3 USES OF HYDROLOGICAL RAINFALL RUNOFF MODELS 

Rainfall runoff models have a wide variety of uses which include: 

filling in and extension of discharge series • 

• 

• 

• 

• 

validation of runoff series 

generation of discharges from synthetic rainfall 

real time forecasting of flood waves 

determination of the influence of changing landuse on the catchment (urbanisation, afforestation) 
or the influence of water use (abstractions, dam construction, etc.) 

 

The use of the model for the HIS is normally limited to the filling in of missing values in discharge 
series and the correction of suspect values. It is not usually applied to short sequences of missing 
data but to gaps of several months in length. The time and effort involved in the calibration of the 
model does not normally justify application to short gaps; though the model may be thus used if it has 
previously been calibrated for the same catchment. 

3.2 THE SACRAMENTO MODEL 

3.2.1 OUTLINE OF MODEL COMPONENTS 

The application of the Sacramento model as integrated in HYMOS is based on a semi-distributed 
approach. It implies that a catchment is divided into a number of segments, which are interconnected 
by channel reaches as shown in Figure 3.1. 
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Figure 3.1: 
Semi-distributed approach 
towards rainfall-runoff simulation 

 

 

 

 

In a segment rainfall is transformed into runoff to the main river system. An explicit moisture 
accounting lumped parameter model is used to carry out the transformation. Important elements in the 
segment phase is the computation of the rainfall abstractions and the response time of the catchment 
to rainfall input, for which the time of concentration is an indicator, see Figure 3.2. Within a segment 
areal homogeneity of rainfall input and basin characteristics is assumed. The contributions of the 
segments to the main river are routed through the river network where the main features are travel 
time and flood wave damping. Generally a Muskingum layer approach or unit hydrograph technique is 
used for the routing. 
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Figure 3.2: 
Features of segment and river 
routing 

 

 

 

Basic data input requirements are time series of rainfall, evapo-transpiration and the observed 
discharge as well as the catchment or segment area. The data time interval depends on the objective 
of the simulation and is generally taken as 1 hour or 1 day. The model simulates the rainfall runoff 
process with a time step, which is less than the data time interval. 

All parameters and storage capacities have also to be initially estimated on the basis of physical 
properties of the segment and the river system. Some then remain fixed whilst other are 
recommended for optimisation. 
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3.2.2 THE SEGMENT MODULE 

The segment module simulates the rainfall-runoff process in part of the catchment, where the 
attention is on the land-phase of the rainfall-runoff process. It is assumed that the open water system 
in the segments contributes little to the shaping of the hydrograph. The conceptualisation of the 
processes as described in the segment module is presented in Figure 3.3. 

 

 

Figure 3.3: 
Conceptualisation of the rainfall runoff 
process in a segment 

 

 

 

 

The segment module is divided into the following components, (see also Figure 3.4): 

Impervious area with transfer to direct runoff 
Previous area 
 Upper zone 
  Tension storage with transfer to evaporation, free water storage 
  Free water storage with transfer to evaporation, percolation, surface 
    runoff and interflow 
 Lower zone 
  Tension storage with transfer to evaporation, free water storage 

  Free water storage with transfer to base flow 

From the impervious areas, precipitation immediately discharges to the channel. However, impervious 
areas, which drain to a pervious part before reaching the channel, are not considered impervious. 
Both zones have a tension and a free water storage element. Tension water is considered as the 
water closely bound to soil particles. Generally first the tension water requirements are fulfilled before 
water enters the free water storage. 
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Figure 3.4: 
Schematisation of rainfall 
runoff process in a segment 

 

 

 

 

 
In the following sub-sections the various components will be described in detail 

Upper zone storage 

The upper zone tension storage represents that precipitation volume required under dry conditions: 

1. to meet all interception requirements, and 

2. to provide sufficient moisture to the upper soil so that percolation can begin. 

If the maximum storage capacity of the upper-zone tension storage is exceeded, water becomes 
available for the upper zone free water storage, a temporary storage from which water percolates to 
the lower zone system and from which water discharges to the channel via the interflow component.  
The preferred flow direction from the upper zone is the vertical direction, i.e. percolation to the lower 
zone system. 

Interflow occurs only when the precipitation rate exceeds the percolation rate.  The upper zone is 
treated as a linear storage element which is emptied exponentially: discharge = storage * storage 
depletion coefficient. The upper zone free water storage depletion coefficient is denoted by UZK and 
the upper zone free water content by UZFWC then the interflow takes place at a rate: 

Qinterflow = UZFWC * UZK                    (3.1) 

When the precipitation intensity exceeds the percolation intensity and the maximum interflow drainage 
capacity, then the upper zone free water capacity (UZFWM) is completely filled and the excess 
precipitation causes surface runoff. 

Lower zone storage 

The lower zone consists of the tension water storage, i.e. the depth of water held by the lower zone 
soil after wetting and drainage (storage up to field capacity) and two free water storages: the primary 
and supplemental storage elements representing the storages leading to a slow and a fast 
groundwater flow component, respectively. The introduction of two free lower zone storages is made 
for greater  flexibility in reproducing observed recession curves caused by groundwater flow. 
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Percolation from upper to lower zones 

The percolation rate from the upper zone to the lower zone depends on the one hand on the lower 
zone demand, i.e. requirements determined by the lower zone water content relative to its capacity 
and on the other hand on the upper zone free water content relative to its capacity.  

The lower zone percolation demand is denoted by PERCact.dem. The upper zone free water content 
relative to its capacity is UZFWC/UZFWM. Hence, the actual percolation intensity then reads: 

PERC = PERCact.dem * UZFWC/UZFWM                   (3.2) 

The lower zone percolation demand has a lower and an upper limit: 

the minimum lower zone percolation demand, and • 

• 

• 

• 

• 

the maximum lower zone percolation demand. 
 

The minimum lower zone percolation demand occurs when all three lower zone storages are 
completely filled. Then by continuity the percolation rate equals the groundwater flow rate from full 
primary and supplemental reservoirs.  Denoting the minimum demand by PBASE then it follows: 

PERCmin.dem = PBASE = LZFPM * LZPK + LZFSM * LZSK                            (3.3) 

where: LZFPM =  lower zone primary free water storage capacity 

LZFSM =  lower zone supplemental free water storage capacity 

LZPK =  drainage factor of primary storage 

LZSK =  drainage factor of supplemental storage 
 

The maximum lower zone percolation demand takes place if the lower zone is completely dried out 
i.e. if its content = 0. Then the maximum percolation rate is expressed as a function of PBASE: 

PERCmax.dem = PBASE (1 + ZPERC)                   (3.4) 

with:  ZPERC >> 1 usually.   

The actual lower zone percolation demand depends on the lower zone content relative to its 
capacity.  Computationally it means that ZPERC has to be multiplied by a function G of the relative 
lower zone water content such that this function: 

equals 1 in case of a completely dry lower zone 

equals 0 in case of a completely saturated lower zone 

represents an approximate exponential decay of the percolation rate in case of a continuous 
recharge. 

 

In the Sacramento model this function has the following form: 

                              (3.5) lowerG REXP
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and the actual percolation demand is given by (see Figure 3.5): 

PERCact.dem = PBASE (1 + ZPERC * G)                   (3.6) 

Distribution of percolated water from upper zone 

The percolated water drains to three reservoirs, one tension and two free water reservoirs.  Based on 
the preceding comments one would expect that the lower zone tension storage is filled first before 
percolation to the lower zone free water storages takes place.  However, variations in soil conditions 
and in precipitation amounts over the catchment cause deviations from the average conditions.  This 
implies that percolation to the free water reservoirs and hence groundwater flow takes place before 
the tension water reservoir is completely filled. The model allows for this to let a fraction of the 
infiltrated water percolate to the two free water storages. When the tension water reservoir is full, all 
percolated water drains to the primary and supplemental free water storage in a ratio corresponding to 
their relative deficiencies. 
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Figure 3.5: 
Actual percolation demand 
representation 

 

 

 

Groundwater flow 

Baseflow to the river from groundwater depends on the contents of the two lower zone free water 
storages and two drainage constants expressed in fractions of the content per day. If the actual 
contents of the primary and supplemental free water zones are denoted by LZFPC and LZFSC 
respectively then the total base flow QBASE becomes, in accordance with the linear reservoir theory: 

QBASE = LZFPC * LZPK + LZFSC * LZSK                 (3.7) 

The drainage factors LZPK and LZSK can be determined from the recession part of the hydrograph 
by plotting that part of the hydrograph on semi-logarithmic paper (Fig. 3.6). In the lowest part of the 
recession curve only the slow base flow component is acting while in the higher stages both base flow 
components contribute. 

The drainage factor LZPK follows from: 
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LZPK = 1 - K                      (3.9) 

where:   K = recession coefficient of primary base flow for the time unit used 

∆t = number of time units, generally days 

QPt0+∆t  = a discharge when recession is occurring at the primary base flow rate 

QPt0  = the discharge t time units later 
 

If QPmax represents the maximum value of the primary base flow, then the maximum water content of 
the lower zone becomes: 

LZFPM = QPmax / LZPK                               (3.10) 

and similarly the supplemental lower zone free water capacity is determined; at least this procedure 
provides first estimates of the lower zone free water capacities (Figure 3.6). 
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Figure 3.6: 
Principle of computation of lower 
zone recession coefficient 

 

 

 

 

The total base flow contributes completely or in part to the channel flow. A complete contribution 
occurs if subsurface discharge (i.e. discharge from the segment, which is not measured at the outlet) 
is absent. Otherwise a fraction of the total base flow represents the subsurface flow. 

Actual evapotranspiration 

Evaporation at a potential rate occurs from that fraction of the basin covered by streams, lakes and 
riparian vegetation. Evapotranspiration from the remaining part of the catchment is determined by the 
relative water contents of the tension water zones. If ED is the potential evapotranspiration, then the 
actual evapotranspiration from the upper zone reads: 

E1 = ED * (UZTWC / UZTWM)                              (3.11) 

i.e. the actual rate is a linear function of the relative upper zone water content.  Where E1 < ED water 
is subtracted from the lower zone as a function of the lower zone tension water content relative to the 
tension water capacity: 

E2 = (ED - E1) * LZTWC / (UZTWM + LZTWM)                            (3.12) 
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If the evapotranspiration should occur at such a rate that the ratio of content to capacity of the free 
water reservoirs exceeds the relative tension reservoir content then water is transferred from free 
water to tension water such that the relative loadings balance. This correction is made for the upper 
and lower zone separately. However, a fraction RSERV of the lower zone free water storage is 
unavailable for transpiration purposes. 

Impervious and temporary impervious areas 

Besides runoff from the pervious area, the channel may be filled by rainwater from the impervious 
area. With respect to the size of the impervious area it is noted that in the Sacramento model a 
distinction is made between permanent and temporary impervious areas where temporary impervious 
areas are created when all tension water requirements are met, i.e. an increasing fraction of the 
catchment assumes impervious characteristics. 

Routing of surface runoff 

Before the runoff from the impervious areas, the overland- and interflow reach the channel, they may 
be transformed according to a unit hydrograph leading to an adapted time distribution of these flow 
rates. 

Use can be made here of the Clark method, which is a combined time-area and storage routing 
method. The model requires the construction of a time-area diagram. For this isochrones are 
constructed representing points of equal travel time to the segment outlet, see Figure 3.7. The areas 
between successive isochrones is determined and subsequently properly scaled by the time of 
concentration Tc. The latter is defined as the time required to have the effect of rainfall fallen in the 
most remote part felt at the segment outlet. The time-area diagram can be thought of as the outflow 
from the segment if only translation and no deformation takes place of an instantaneous unit supply of 
rain over the entire segment. Subsequently, the time area diagram flow is routed through a linear 
reservoir, which characterises the effect of storage in the open drainage system of the segment. This 
reservoir is represented by the second parameter: the recession coefficient k. It is noted that the 
output from the reservoir represents the instantaneous unit hydrograph (IUH). This has to be 
transformed into say a 1-hour unit hydrograph, dependent on the chosen routing interval. 
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Figure 3.7: 
Principles of the Clark method for 
simulating surface runoff and 
interflow 
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The two parameters Tc and k can be obtained from observed rainfall and discharge hydrographs. The 
time of concentration is equal to the time interval between cessation of rainfall and the time the 
hydrograph has receded to its inflection point (see Figure 3.2). Alternatively it is determined from 
physical features of the segment as length and slope. A large number of empirical formulas are 
available which relate the time of concentration to topographical features of the basin. It is noted, 
though, that these formulas have generally only local validity. The best is to estimate the celerity from 
the flow velocities in the drainage system taking account of the following characteristics of celerity: 

• If the rivulet remains inbank the celerity is about 1.5 to 1.7 times the cross-sectional flow velocity 

• If the flow becomes overbank the above celerity has to be multiplied with the ratio of the drain 
width and the total width of the flow at the water surface (i.e. inclusive of the floodplain) 

 

To the time required to travel through the drainage system one has to add the overland flow time. 

The recession coefficient k is determined from the slope of recession part of the surface runoff 
hydrograph, similar to the procedure for groundwater.  

3.2.3 THE CHANNEL MODULE 

Contributions to the channel flow component are made by: 

runoff from impervious areas, • 

• 

• 

• 

• 

• 

• 

overland flow from the pervious areas, 

interflow, and 

base flow (completely or in part). 
 

The propagation and attenuation of the segment outflows in channel branches can be described by: 

Unit hydrograph technique    

Muskingum routing 

Structure and reservoir routing  
 

Unit hydrograph technique 

To propagate and attenuate riverflow through a channel reach for each channel branch a unit 
hydrograph can be defined. It describes how the inflow to the branch will be redistributed in time while 
travelling through the branch. Let the inflow to the branch be denoted by Ii and let the ordinates of the 
unit hydrograph be U1, U2, etc., with Ui =1, then the outflow from the branch Oi becomes: 

Oi     = Ii x U1                    (3.13) 

Oi+1= Ii x U2 + Ii+1 x U1 

Oi+2= Ii x U3 + Ii+1 x U2 + Ii+2 x U1, etc. 
 

If e.g. the travel time through the reach is exactly 1 time interval and there is no attenuation then:         

U1 = 0, U2 = 1. 

This option provides a simple means to combine segment outflows entering the river at different 
locations, when the computational interval is too large for proper channel routing using the 
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Muskingum approach. E.g. the travel time through a branch is 15 hours, but the computational interval 
is 1 day as rainfall data were only available as daily totals. Then within that day (24-15)/24x100% 
arrives and the rest the next day, so U1 = 0.375, U2 = 0.625. Routing with daily intervals is very 
acceptable when one is interested in 10-daily or monthly flow data and not in the finest details of the 
hydrograph.   

Muskingum routing 

The Muskingum procedure is based on the following routing equation:  

O(t+∆t) =c1I(t) + c2I(t+∆t) + c3O(t)                (3.14) 

where:  I = Inflow to channel reach 

 O = Outflow from a channel reach  

 

Since equation (3.14) is derived from S = K(xI+(1-x)O), where S = storage in the reach, it is observed 
that for x = 0 a simple linear reservoir concept follows: S = KO. With x = 0.5 there is no attenuation 
and the inflow is passed on through the end of the channel reach without any attenuation in time K.  

The routing interval should be less than or equal to K as otherwise peaks will be missed at the 
downstream end of the reach. Often a value of ∆t = ½ to ¼ of K is advised. However, taking ∆t too 
small then c2 becomes negative, which will lead to negative outflows when the inflow hydrograph 
suddenly rises. To avoid negative outflows the routing interval is conditioned by: 2Kx≤∆t≤K.  

Unfortunately, this leaves little freedom in the selection of ∆t when x is close to 0.5. Note that when 
x=0.5 and ∆t = K, it follows from (3.14) that c1=1, c2=0 and c3=0; hence: O(t+∆t) = O(t+K) =c1I(t), i.e 
the inflow is passed on to the outlet time K later, unaltered.  

Flood wave celerity and attenuation changes drastically when the river reaches the flood plain. To 
cope with these changes a layered Muskingum approach can be used. The principle of the layered 
Muskingum procedure is displayed in Figure 3.8, in which the meaning of the various parameters is 
explained. By applying different sets of parameters for the inbank flow and overbank flow the 
reduction of the flood wave celerity in case of wide flood plains can be taken into account. 
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Figure 3.8: 
Principle of layered 
Muskingum approach 
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Structures and reservoirs 

Some features may be present in the river which affect the shape of the hydrograph, like culverts and 
reservoirs: 

• culvert 

A culvert limits the capacity of the river. Basically, it chops the peak of the hydrograph beyond the 
capacity of the culvert. In the model the shape of the hydrograph is altered such that upon 
passage of the floodwave the maximum downstream hydrograph value is kept at the culvert 
capacity until the entire volume in the upstream hydrograph above the capacity of the culvert has 
passed. It is noted that some old bridges may act also more or less like a culvert. 

• reservoir 

The model includes a number of reservoir routing options where the flow is controlled by overflow 
(ogee and glory type) structures and underflow structures. For routing a third order Runge-Kutta 
scheme is used. 

3.2.4 ESTIMATION OF SEGMENT PARAMETERS 

Overview of parameters 

The following groups of parameters can be distinguished for a particular segment: 

Segment 
Segment area (km2) 

Direct runoff 
PCTIM  Permanently impervious fraction of segment contiguous with stream channels 
ADIMP  Additional impervious fraction when all tension water requirements are met 
SARVA  Fraction of segment covered by streams, lakes and riparian vegetation 

Upper soil moisture zone 
UZTWM Capacity of upper tension water zone (mm) 
UZFWM Capacity of upper free water zone (mm) 
UZK  Upper zone lateral drainage rate (fraction of contents per day) 

Percolation 
ZPERC Proportional increase in percolation from saturated to dry conditions in lower 

zone 
REXP  Exponent in percolation equation, determining the rate at which percolation  

  demand changes from dry to wet conditions 

Lower zone 
LZTWM Capacity of lower zone tension water storage (mm) 
LZFPM Capacity of lower zone primary free water storage (mm) 
LZFSM Capacity of lower zone supplemental free water storage (mm) 
LZPK Drainage rate of lower zone primary free water storage (fraction of contents 

per day) 
LZSK Drainage rate of lower zone supplemental free water storage (fraction of 

contents per day) 
PFREE Fraction of percolated water, which drains directly to lower zone free water 

storages 
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RSERV Fraction of lower zone free water storages which is unavailable for 
transpiration purposes 

SIDE Ratio of unobserved to observed baseflow 
SSOUT Fixed rate of discharge lost from the total channel flow (mm/t) 

Surface runoff 
 Unit hydrograph ordinates 

Internal routing interval 
PM Time interval increment parameter 
PT1 Lower rainfall threshold 

Basically two procedures are available to get first estimates for the majority of the segment 
parameters: 

• from observed rainfall and runoff records: this method is usually applied and works well provided 
that the model concepts are applicable and that reliable records are available for some time 
covering the majority of the range of flows  

• from soil characteristics: this method is particularly suitable if no runoff records are available, i.e. 
for ungauged catchments. 

 

With respect to gauged catchments the following grouping of parameters according to the method of 
estimation can be made: 

1. Parameters computed and estimated from basin map solely:  
segment area and SARVA 

2. Parameters estimated from observed rainfall and runoff records: 
readily: LZFPM, LZPK, LZFSM, LZSK, PCTIM 

3. approximately: UZTWM, UZFWM, UZK, LZTWM, SSOUT and PFREE 
Parameters estimated from topographic maps and rainfall and runoff records: 
unit hydrograph ordinates obtained from Clark method 
Parameters to be obtained through trial runs: 

4. ZPERC, REXP, SIDE, ADIMP, RSERV 
5. Internal routing parameters, as per requirement: 

PM, PT1, PT2 
 

In the next sub-sections guidelines are given for the determination and estimation of the segment 
parameters for gauged catchments.  

Segment parameter estimation for gauged catchments 

The estimation of the segment parameters is presented according to their order of appearance in the 
previous sub-section. The sequence in which the estimation is done in practice is different from this 
order, for which reference is made to the end of the sub-section.  

Segment: 
Segment area 

To allow a good comparison between the observed and simulated runoff from the basin, the segment 
area (km2) should refer to the total segment area draining upstream of the gauging station. Any 
difference between total segment area up to the main stream and the area upstream of the gauging 
station can be accommodated for in the channel routing part. 
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Direct runoff: 
PCTIM 

Permanently impervious fraction of the basin contiguous with stream channels.  It can be determined 
from small storms after a significant period of dry weather. Then the volume of direct runoff 
(=observed runoff - baseflow) divided by the volume of rain gives the percentage impervious fraction 
of the basin. PCTIM should not be close to 1! 

An example is given below. 

 

 

Figure 3.9: 
Calculation of PCTIM 
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ADIMP 

Fraction of the basin, which becomes impervious as all tension water requirements are met. It can be 
estimated from small storms after a very wet period. As before, the volume of direct runoff divided by 
the volume of rain gives the total percentage of impervious area. The estimate for ADIMP follows 
from: 

ADIMP = Total Percentage Impervious – PCTIM                            (3.15) 

SARVA 

Fraction of the basin covered by streams, lakes, and riparian vegetation, under normal circumstances.  
The SARVA area is considered to be the same as or less than PCTIM (see below).  Detailed maps 
may be referred to in order to estimate the extent of paved areas, which drain directly to the streams 
so that differences between PCTIM and SARVA can be approximated. Generally, SARVA appears to 
range between 40% and 100% of the PCTIM value. 

Upper soil moisture zone: 
UZTWM - the upper tension storage capacity 

The depth of water, which must be filled over non-impervious areas before any water becomes 
available for free water storage. Since upper zone tension water must be filled before any streamflow 
in excess of the impervious response can occur, its capacity can be approximated from hydrograph 
analysis.  Following a dry period when evapotranspiration has depleted the upper soil moisture, the 
capacity of upper zone tension water can be estimated. That volume of rainfall, which is retained 
before runoff from the pervious fraction is visible, is identified as UZTWM. To that rainfall volume the 
losses to evaporation during the considered period should be added. All periods of rain following a dry 
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period should be checked for estimation of this parameter. Generally the capacity of the upper zone 
tension will vary between 25 and 175 mm, depending on the soil type. 

Following the logic of the Curve Number method, where the initial abstraction before rainfall becomes 
effective is estimated as 20% of the potential maximum retention, the UZTWM becomes: 

UZTWM = 50.8(100/CN - 1)  (mm)                 

CN-values range from 30 to about 90 for rural areas and are a function of: 

soil type (soil texture and infiltration rate)  • 

• 

• 

• 

• 

• 

hydrological soil groups A-D are distinguished 

land use,  

type of land cover,  

treatment, and  

hydrologic or drainage condition 
 

It is also a function of antecedent moisture condition, for which the condition “dry” should be taken in 
view of the meaning of UZTWM. Based on this assumption UZTWM would vary between 120 and 6 
mm, values which are in the range of those given above, particularly if one realises that the 20% of 
the potential maximum as initial abstraction is an average value. Reference is made to standard 
textbooks on hydrology for CN-values 

UZFWM - the upper free water storage capacity 

Upper zone free water represents that depth of water, which must be filled over the non-impervious 
portion of the basin in excess of UZTWM in order to maintain a wetting front at maximum potential.  
This volume provides the head function in the percolation equation and also establishes that volume 
of water, which is subject to interflow drainage. Generally its magnitude ranges from 10-100 mm.  It is 
not generally feasible to derive the magnitude of the upper zone free water from direct observations, 
and successive computer runs are required in order to establish a valid depth. 

However, if a rough estimate of UZK is available (see below), then a rough value of UZFWM can be 
obtained from the hydrograph at the time of the highest interflow, by reducing the flow value with 
primary and supplemental baseflow.  

UZK - the upper zone lateral drainage rate 

The upper zone lateral drainage rate is expressed as the ratio of the daily withdrawal to the available 
contents.  Its range is roughly 0.18 to 1.0, with 0.40 generally serving as an effective initial estimate.  
Though basically, this factor is not capable of direct observation and must be determined by 
successive computer runs, Peck (1976) suggests the following approximate procedure. UZK is 
roughly related to the amount of time that interflow occurs following a period with major direct and 
surface runoff. A long period of interflow results in a small value for UZK. Assuming that interflow is 
observed during N consecutive days and that interflow becomes insignificant when it is reduced to 
less than 10% of its maximum value it follows:  

(1 – UZK)N = 0.10     or     UZK = 1 – 0.1 1/N                            (3.16) 

Values for UZK as a function of N can be read from Figure 3.10. 
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Percolation: 
ZPERC 

The proportional increase in percolation from saturated to dry condition is expressed by the term 
ZPERC.  The value of ZPERC is best determined through computer trials.  The initial estimate can be 
derived by sequentially running one or two months containing significant hydrograph response 
following a dry period. The value of ZPERC should be initially established so that a reasonable 
determination of the initial run-off conditions is possible. 

 

 

Figure 3.10: 
UZK as function of number of days 
with significant interflow 
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Amstrong (1978) provides a procedure to derive ZPERC from the lower zone tension and free water 
reservoir capacities and drainage rates, using equations (3.3) and (3.4). The maximum percolation 
takes place when the upper zones are full and the lower zones are empty. Assuming that the 
maximum daily percolation will be the maximum contents of the lower zones, from equation (3.4) it 
follows for ZPERC: 

                     (3.17) PBASELZFPMLZTWM −+
=

PBASE
LZFSMZPERC +

If data would be available on maximum percolation rates ZPERC can be estimated using equation 
(3.4). Values for ZPERC ranging from 5 to 80 have been used. 

REXP 

The exponent in the percolation equation which determines the rate at which percolation demand 
changes from the dry condition, (ZPERC + 1)*PBASE, to the wet condition, PBASE.  Figure 3.5 
illustrates how different values of the exponent affect the infiltration rate. It is recommended that an 
initial estimate of this exponent is made from the same record which is used in determining an initial 
estimate of ZPERC. The interaction between PBASE, ZPERC and REXP may require a shift of all 
three terms whenever it becomes clear that a single term should be changed. Visualising the 
percolation curve generated by these three terms helps to ascertain the necessary changes. The 
observed range of REXP is usually between 1.0 and 3.0. Generally a value of about 1.8 is an effective 
starting condition. Values for REXP for different soils are given by Amstrong (1978) and are presented 
in Table 3.1. 
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Soil classification REXP 
Sand 
Sandy loam 
Loam 
Silty loam 
Clay, silt 

1.0 
1.5 
2.0 
3.0 
4.0 

Table 3.1: Perlocation exponent REXP for different soil types 

Lower zone: 
LZTWM - lower zone tension water capacity (mm) 

This volume is one of the most difficult values to determine effectively. Inasmuch as carryover 
moisture in this storage may exist for a period of many years, its total capacity may not be readily 
discernible from available records. If a drought condition during the period of record in the basin or in 
the area being studied has been sufficient to seriously affect the transpiration process of deep rooted 
plants, then the period of record is usually sufficient to determine the maximum storage value of lower 
zone tension water. Often, however, field data is not adequate for this purpose. As a result, unless 
great care is taken, the depth of lower zone tension water storage may inadvertently be set near the 
maximum deficit experienced during the period of record rather than the actual capacity of the zone. It 
has been noted that the plant growth of an area is a relatively effective indicator of the capacity of the 
lower zone tension water zone. In heavily forested regions of deep-rooted conifers, this zone may be 
approximately 600 mm in magnitude.  In areas of deep-rooted perennial grasses this depth is more 
likely to be close to 150 mm.  Where vegetation is composed primarily of relatively shallow-rooted 
trees and grasses, this depth may be as little as 75 mm. It should be realised that this zone 
represents that volume of water, which will be tapped by existing plants during dry periods. 

An approximate procedure to estimate LZTWM from a water balance analysis is presented by Peck 
(1976). For this a period is selected with direct and/or surface runoff following an extended dry spell. 
The selected period is bounded by the times t1 and t2. At both times t1 and t2 only baseflow occurs. 
The start t1 is selected immediately prior to the occurrence of direct/surface runoff and t2 immediately 
following a period of interflow. The times t1 and t2 can best be selected from a semi-log plot of the 
runoff, see Figure 3.11.  
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g 
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t1 t2 time

 

 

Figure 3.11: 
Selection of period for 
LZTWM estimation 
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Assuming that UZTW is full and UZFWC is empty at times t1 and t2 the water balance for the period 1- 
t2 then reads: 

P – R – E – ∆LZFPC – ∆LZFSC = ∆LZTWC              (3.18) 

where: P = precipitation from t1 to t2 (mm) 
 R  = total runoff from t1 to t2 (mm) 

 E  = segment evaporation (mm); this amount would small for most wet period and may  
   be neglected 

 ∆LZFPC = change in storage in LZ primary free water reservoir from t1 to t2 (mm) 
 ∆LZFSC = change in storage in LZ supplemental free water reservoir from t1 to t2 (mm) 
 ∆LZTWC = change in the lower zone tension water (mm) 

 ∆LZTWC is a lower limit of LZTWM since: 
The lower zone tension water reservoir may not have been fully empty at t1 • 

• The lower zone tension water reservoir may not have been completely filled at t2 
 

Hence some 10 to 20% (or more) may be added to the value obtained through (3.18). If such ideal 
cases as assumed above cannot be found, water balances for periods of 3 to 4 months may be 
considered. 

In equation (3.18) ∆LZFPC and ∆LZFSC are computed as follows: 

∆LZFPC = LZFPC(t2) – LZFPC(t1), where LZFPC(t) = QP(t)/LZPK            (3.19) 

∆LZFSC = LZFSC(t2) – LZFSC(t1), where LZFSC(t) = QS(t)/LZSK            (3.20) 

The primary baseflows QP at times t1 and t2 are estimated by extrapolation from other periods. Let the 
discharges at t1 and t2 be denoted by Q1 and Q2, then the supplemental baseflows follow from: 

QS(t1) = Q1 – QP(t1)    and   QS(t2) = Q2 – QP(t2)                           (3.21) 

LZFPM - lower zone primary free water storage 

The maximum capacity of the primary lower zone free water, which is subject to drainage at the rate 
expressed by LZPK. The value of the lower zone primary free water maximum can be approximated 
from hydrograph analysis. For this the primary base flow, obtained from a semi-log plot of the lower 
end of the recession curve, is extended backward to the occurrence of a peak flow. Assuming that the 
primary free water reservoir is completely filled then, so that it outflow is at maximum (QPmax), its 
value is determined from equation (3.10). The effectiveness of this computation in determining the 
maximum capacity is dependent upon the degree to which the observed hydrograph provides a 
representation of the maximum primary baseflow. If only a portion of the groundwater discharge is 
observable in the stream channel, the estimated capacity based upon surface flows must be 
increased to include the non-channel components by applying the term SIDE (See below).  

LZFSM - lower zone supplemental free water storage  

The maximum capacity of the lower zone supplemental free water reservoir, which is subject to 
drainage at the rate expressed by LZSK. A lower limit of the lower zone free water supplemental 
maximum can be approximated from hydrograph analysis. Fig. 3.6 illustrates the computation of the 
lower zone free water supplemental maximum. Note that first the primary base flow has to be 
identified and corrected for, see also equation (3.21). The effectiveness of this computation in 
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determining the maximum capacity is dependent upon the degree to which the observed hydrograph 
provides a representation of the maximum baseflow capability of the basin.  If only a portion of the 
groundwater discharge is observable in the stream channel, the estimated capacity based upon 
surface flows must be increased to include the non-channel components by applying the term SIDE 
(See below). 

LZPK - lateral drainage of the lower zone primary free water reservoir 

Lateral drainage rate of the lower zone primary free water reservoir expressed as a fraction of the 
contents per day. The coefficient is determined from the primary base flow recession curve. Selecting 
flow values from this curve at some time interval ∆t apart provides with the help of equations (3.8) and 
(3.9) the required estimate, see also Figure 3.6.  

LZSK - lateral drainage of the lower zone supplemental free water reservoir 

Lateral drainage rate of the lower zone supplemental free water reservoir, expressed as a fraction of 
the contents per day. Its computation is outlined in Figure 3.6. The procedure is similar to that of 
LZPK, with the exception that the flow values have to be corrected for the primary base flow. 

PFREE 

The fraction of the percolated water, which is transmitted directly to the lower zone free water 
aquifers.  Its magnitude cannot generally be determined from hydrograph analysis.  An initial value of 
0.20 is suggested. Values will range between 0 and 0.50. The analysis of early season baseflow 
allows an effective determination of PFREE. The relative importance of PFREE can be determined 
from storms following long dry spells that produce runoff (UZTW completely filled). If the hydrograph 
returns to approximately the same base flow as before then little filling of the lower zone free water 
reservoirs did take place and hence the PFREE-value can be rated small, 0 to 0.2. If, on the contrary, 
the base flow has increased significantly a PFREE-value as high as 0.5 may be applicable.   

RSERV 

Fraction of the lower zone free water, which is unavailable for transpiration purposes. Generally this 
value is between zero and 0.40 with 0.30 being the most common value. This factor has very low 
sensitivity. 

SIDE 

Represents that portion of base flow, which is not observed in the stream channel. When the soil is 
saturated, if percolation takes place at a rate, which is greater than the observable baseflow, the need 
for additional soil moisture drainage becomes manifest. SIDE is the ratio of the unobserved to the 
observed portion of base flow.  When the saturated soils do not drain to the surface channel, SIDE 
allows the correct definition of PBASE, in order that the saturated percolation rate may be achieved. 
In an area where all drainage from baseflow aquifers reaches surface channels, SIDE will be zero. 
Zero or near zero values occur in a large proportion of basins. However, in areas subject to extreme 
subsurface drainage losses, SIDE may be as high as 5.0. It is conceivable that in some areas the 
value of SIDE may be even higher. 

SSOUT 

The sub-surface outflow along the stream channel, which must be provided by the stream before 
water is available for surface discharge. This volume expressed in mm/time interval is generally near 
zero.  It is recommended that the value of zero be utilised, and SSOUT is applied only if the log Q vs. 
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time plot requires a constant addition in order to achieve a valid recession characteristic. If constant 
volumes of flow are added to observed stream flow, the slope of the discharge plot will be altered. 
That value, which is required to linearize the primary recession, is the appropriate value of SSOUT. It 
should be realised that where SSOUT is required, an effective determination of lower zone free water 
storages and discharge rates will require inclusion of the SSOUT value (mm/∆t) 

Surface runoff 

Unit hydrograph ordinates for the routing of flow from the impervious and pervious surfaces as well as 
interflow towards the segment outlet can be obtained through standard unit hydrograph procedures. It 
requires the selection of rainfall events (corrected for losses) with their resulting flood hydrographs 
(corrected for base flow). Note that for each event the net rainfall amount should match with the 
surface runoff and interflow amount. Various procedures are available to arrive at a unit hydrograph. If 
the rainfall intensity during the storm varies, multiple linear regression and discrete convolution 
techniques may be applied. The regression technique is readily available in spreadsheet software. 
The resulting unit hydrographs generally will show some irregularities and hence requires some 
smoothing afterwards. Unit hydrographs from various storms may appropriately be averaged to arrive 
at a representative unit hydrograph for the segment.  

Another option is to use the Clark method. The principle of the Clark method was dealt with in Sub-
section 3.2.2. First requirement is the derivation of a time-area diagram. If a Digital Elevation Model 
(DEM) is available from a catchment with appropriate software automatic calculation of the time-area 
diagram is possible. In the absence from a DEM the time-area diagram is derived from a basin map. 
By estimating travel times to the basin outlet (from river and terrain slopes, assumed roughness and 
flow depth) isochrones can be determined. The areas between successive isochrones is determined 
leading to a first estimate of the time-area diagram. The total time base of the time-area diagram 
should be the concentration time Tc, but due to inaccurate assessment of celerities in the basin it may 
differ from that. Therefore, the time base of the time-area diagram is scaled by a more appropriate 
estimate of Tc. An estimate for Tc may be obtained as the time lapse between the cessation of rainfall 
and the occurrence of recession on the falling limb of the hydrograph of surface runoff. The time base 
of the time-area diagram is scaled by this time lapse. Alternatively, the concentration time is estimated 
from an empirical formula applicable to the region. E.g. for a number of small catchments in the Indus 
basin the following equation applies: 

                       (3.22) S
L

119
1Tc =

where: Tc = concentration time (hrs) 
 L   = length of river (km) 
 S  = slope of main river  

The units of the time-area diagram (km2) are converted into m3/s by multiplication with 0.278/∆t, with ∆
t in hours. Subsequently, the time-area diagram is routed through a linear reservoir, with reservoir 
coefficient k, estimated from the slope of the recession curve of the surface water hydrograph. The 
routing is carried out by the following equation: 
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                        (3.23) 

 

where: Iav  = average inflow during ∆t (input is in form of histogram) 

 O  = outflow from the linear reservoir 

The outflow from the reservoir is the Instantaneous Unit Hydrograph (IUH) for the basin, which has to 
be transformed by averaging or S-curve technique into the Unit Hydrograph resulting from a rainfall of  
duration equal to the routing interval. 
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Internal routing interval 

PM Time interval increment parameter 

PT1 Lower rainfall threshold 

PT2 Upper rainfall threshold  

In case the time step used in the model is larger than 1 hour, the model simulates the redistribution of 
water between the various reservoirs with a time step, which is smaller than the time interval of the 
basic data. Particularly for the infiltration process this effect could be important. Also the rainfall will be 
lumped to that smaller interval. The number of increments in the time interval is derived from: 

N∆t = 1 + PM * (UZFWC * F + Peff)                 (3.24) 

where: 

F = 1               for Peff  < PT1                 (3.25) 

F = 1/2 Peff   / PT2           for PT1 ≤ Peff ≤ PT2                (3.26) 

F = 1 - 1/2PT2  / Peff for Peff  > PT2                 (3.27) 

The most important parameter is seen to be PM. Taking a very small value for PM (say PM = 0.01), 
then N∆t remains approximately1. If e.g. PM = 0.1 then N∆t becomes substantially larger than 1. To 
limit the increase of N∆t a low value for PT1 is to be chosen in combination with a large value of PT2, 
which will reduce the value of F.  

Sequence of parameter estimation 

From the presentation above it will be clear that certain parameters should be estimated before other 
can be assessed. The following sequence is recommended of which the first three steps are 
mandatory: 

1. Segment area 

2. Lower zone primary free water parameters LZPK and LZFPM 

3. Lower zone supplemental free water parameters LZSK and LZFSM 

4. Impervious fraction PCTIM 

5. Upper zone parameters UZTWM, UZK and UZFWM  

6. Lower zone tension capacity LZTWM 

7. Percolation parameters ZPERC and REXP 

8. Remaining parameters 
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Linear reservoirs 

An essential feature of the Sacramento model is that the free water reservoirs are considered as 
linear reservoirs, i.e. there is a linear relation between the reservoir storage S and the outflow Q: 

S = kQ                     (3.28) 

If the recharge is indicated by I, the continuity equation for the linear reservoir reads: 

dS/dt = I – Q                    (3.29) 

Eliminating S from above equations results in a linear first order differential equation in Q: 

                     (3.30) 011dQ
=−+ I

k
Q

kdt

With I constant and at t = t0 Qt = Qt0 the solution to (3.30) reads: 
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When there is no recharge to the reservoir (I = 0) equation (3.31) reduces to: 
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This equation can be compared with (8), using the same notation: 
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Expressing time in days, then the amount of water released from the reservoir in 1day amounts 
according to equation (3.28): 

                   (3.35) kQ )K1(S
k
1exp1kQkQSS 001010 −=















−−=−=−

This is seen to match with e.g. the equations for the lower zone primary free water reservoir, where:     

S0 = LZFPC    and       1-K = LZPK                (3.36) 

Equation (3.34) provides a means to express the lower zone free water parameters in terms of 
dimensions and physical properties of aquifers. Consider the phreatic aquifer shown in Figure 3.12, 
which has the following dimensions and properties: 

1. The width of the aquifer perpendicular to the channel is L 

2. The water table at the divides is h0 above the drainage base 

3. The specific aquifer yield is µ 

4. The aquifer transmissivity is T. 
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The amount of water stored above the drainage base per unit length of channel available for drainage 
is: 

S = µc1Lh0     with ½<c1<1  

The discharge to the channel per unit length of channel according to Darcy with the Dupuit 
assumption 

Q = -2Tdh/dx = 2Tc2h0/(L/2)  with c2>1 

 

A

A’A’

SECTION  A-SECTION  A-

h0drainage base

Aquifer transmissivity = KD
specific yield = µ

divide
divide

 

 

Figure 3.12: 
Schematic cross section 
through basin aquifer 

 

L  

 

 

Combining the above two equations by eliminating h0 and bringing it in the form of the linear storage 
discharge relation (3.28): 
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Hence for the reservoir coefficient k in (3.28) it follows: 

                     (3.37) k µ
=

cT4
L2

The reservoir coefficient k is seen to be proportional to the square of the aquifer width and inversely 
proportional to T, which is logical as k is a measure for the reside-time of the percolated water in the 
groundwater zone. The value of c varies between 2 and 2.5 dependent on the shape of the water 
table. For the parameters K and LZPK for the lower zone primary free water storage it then follows: 
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A similar story applies for the lower zone free supplemental reservoir, which can be viewed as 
representing the drainage from the shallower based denser network of the smaller channels, see 
Figure 3.13. Since its main difference is with the aquifer width L, which is much smaller than for the 
deeper based primary channel network, its reservoir coefficient will be smaller than of the primary free 
water storage and consequently LZSK >> LZPK. 
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Note that similar differences in a basin between fast and slow draining aquifers if different soils are 
present leading to different transmissivities. 

Note also that from equation (3.33) it follows for t – t0 = 1 that K = Q1/Q0.  Hence, by deriving this ratio 
for the recession part of the hydrograph, the parameter K can be obtained from the  
lowest part of the recession curve where the ratio becomes constant. 
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Figure 3.13: 
Cases of multiple exponential 
decay of recession curve 

 

 

 

 

 

 

3.2.5 REQUIRED INPUT 

The input required to run the model for simulation of rainfall-runoff process in a segment is presented 
in Figure 3.14, which shows the HYMOS screen for running the Sacramento model.  

To run the channel routing module the routing parameters, as presented in Section 3.2.3, have to be 
entered for each distinguished branch. For each branch it has to be specified which hydrograph has to 
be routed to the next node, which may be: 

1. Segment outflow from one or more segments, draining at the upstream channel node 

2. Outflow from one or more upstream channel branches 

3. Hydrograph presented by the user, e.g. the outflow from a reservoir 
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Figure 3.14: 
Input screen for running 
Sacramento rainfall-runoff 
model in HYMOS 

 

 

 

 

Example 3.1 Case study 1:Rainfall-runoff simulation for Dakor basin 

A worked out example has been prepared for a part of the KHEDA catchment. The selected basin is 
located upstream of the stream gauging station Dakor: ‘Dakor basin’. 

Basin layout and available data 

Case study 1 is carried out for Dakor catchment, see Figure 3.15, located in the south-eastern part of the 
basin indicated in the database as KHEDA catchment, see Figure 3.16.  

Figure 3.15: Layout of Dakor catchment 
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The basin measures 430.59 km2 upstream of gauging station Dakor. The length of the river is 53 km and 
the slope is approximately 10-3. At the measuring site at Dakor the river is about 60 m wide. The river bed 
is at 45 m +MSL. From the basin map it is observed that some storage tanks are present in the area. The 
area contains sandy soils, which dry out quickly. 

In and around Dakor basin the following stations are of importance: 
Rainfall: Vadol 
 Balasinor 
 Savli Tank 
 Mahisa 
 Vagharoli 
 Thasara 
 Dakor 
 
Evaporation: Anand 
 Valsad 
 
Streamflow: Dakor 
Daily rainfall data is available for quite a number of years for the above-mentioned stations. Hourly 
rainfall data, however, is lacking. Also a long record of pan evaporation data is available from two 
stations a little south of the basin, but which are considered representative for the basin. Hourly water 
level data is available for a large number of monsoon seasons. Prior to and after the monsoon no 
water level records are available as the river runs generally dry. During the monsoon season four 
times per day flow measurements are being carried out. 

 
Figure 3.16: Map showing the location of the Dakor basin in the KHEDA  
  catchment 

Objective 

The objective of this example is to demonstrate the development of a basin rainfall-runoff model based on 
Sacramento model available in HYMOS as a tool for creation of long series of runoff based on climatic 
data. Emphasis will be on the steps involved in model calibration and verification. Though the final 
acceptable result may involve a number of trials, this number can be limited if the initial estimates for the 
parameter values are carefully made. One should also get an indication of the possible range of the 
parameters for the basin under study.  
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The model will be developed using daily data on rainfall, evaporation and runoff. In this case we solely 
concentrate on segment rainfall-runoff simulation. River routing will not be considered as the interval of one 
day is too large for meaningful routing in such a small basin. For that hourly data should have been present 
for rainfall. For water resources analysis routing with an interval of one day will be sufficient. 

Basin reconnaissance and input data preparation 

After having collected and studied the topographic, geologic, soils and land use maps of the area as well 
as the characteristics of the hydraulic infrastructure it is imperative that a field visit precedes the model 
development. Based on differences is drainage characteristics, it may be decided to subdivide the basin in 
segments. The question on sub-division comes again when dealing with the spatial variability of the rainfall. 
How far sub-division should take place depends basically on the objective of the study in relation spatial 
variability. Segment areas in practice vary from a few hundred square kilometers to a few thousand. For 
water resources assessment studies where an exact reproduction of the shape of the hydrograph is not of 
importance segments will generally not be small; matching with the locations where flow data are required 
then also plays a role. Furthermore, practicalities as the availability of a gauging station with calibration 
data matters. The basin itself acts diffusive and smoothes the differences. Here it assumed that the Dakor 
catchment is sufficiently homogeneous to be covered by one segment. 

Next the input and calibration data are being prepared including catchment rainfall data, potential 
evapotranspiration and runoff. It is noted here that in view of the objective of the course, being 
familiarisation with the Sacramento model, data validation is not given the attention it deserves but should 
be given due attention in actual model development. Completely erroneous models may result from poorly 
validated data. 

For calibration and verification purposes representative periods have to be selected, which include the full 
gamma of flows. For the case study the year 1994 will be considered for calibration purposes. Flows have 
been very large that year and also a distinct recession curve is available for parameter estimation. 

Catchment rainfall series 1994 

All rainfall stations mentioned above were considered for calculation of the areal rainfall. An example 
of the variability of the point rainfall data on a daily basis is illustrated in Figure 3.17. The Figure also 
shows that occasionally day shifts in the rainfall data seem to be present. Such errors may deteriorate 
the quality of the catchment rainfall. Though in this area it is hard to say whether such errors are 
present as the correlation distance of rainfall events here is are rather small, careful analysis of the 
daily record casts doubt on the time of occurrence of the rainfall events as reported. Another 
impression of the spatial variability of the data is obtained from the annual totals as listed for the 
years 1993 and 1994 in Table 3.2. 

Station Annual Rainfall (mm) 
1993 

Annual Rainfall (mm) 
1994 

Thiessen weights 

Vadol 
Balasinor 
Savli Tank 
Mahisa 
Vagharoli 
Thasara 
Dakor  

590 
574 
837 
700 
924 
991 
672 

1317 
1485 
1193 
775 
1577 
1775 
1252 

0.17 
0.33 
0.02 
0.02 
0.24 
0.14 
0.08 

Table 3.2: Annual rainfall of years 1993 and 1994 and Thiessen weights for 
areal rainfall computation 

From the table it is observed that the spatial variability in the rainfall amounts even at short distances is 
rather large. The low annual value for Mahisa in 1994 compared to its neighbours is mainly due to the fact 
that an extremely large rainfall, which occurred in the region, was not available in the Mahisa record 
(erroneously or not). From the table one can also see that rainfall totals from one year to another may vary 
considerably. 

Thiessen method has been applied to compute the daily areal rainfall in the Dakor basin, see also Figure 
3.18 and Table 3.2, where the station weights are presented. It is observed that the contributions of Savli 
Tank and Mahisa in the areal total for the Dakor basin are small, hence the doubts on the Mahisa record 
for 1994 will not greatly affect the computed areal average.  
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Point rainfall 1-15 September 1994
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Figure 3.17: Example of daily point rainfall data at the selected stations 

The resulting daily average rainfall for the year 1994 is presented in Figure 5. It may be observed that 
the rainfall occurs from mid June till mid September only. The annual total amounts 1483 mm. 

Figure 3.18: Thiessen polygon for Dakor basin rainfall 

Potential evapotranspiration series 1994 

The potential evapotranspiration in Dakor basin is derived from the pan-evaporation records available from 
the stations Anand and Valsad. To transform pan evaporation into potential evapotranspiration generally 
pan coefficients ranging from 0.6 to 0.8 are being applied. Here, an average value of 0.7 is used. The 
variation of the potential evapotranspiration through the year is presented in Figure 6. Make sure that the 
evapotranspiration series does not include missing data. The annual total potential evapotranspiration for 
1994 amounts 1483 mm, which is coincidentally exactly equal to the computed basin average rainfall. It is 
observed that the potential evapotranspiration during the monsoon season drops to about 2 mm/day in July 
and August, with an average of 2.9 mm/day from June till September. 
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Dakor basin rainfall 1994
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Figure 3.19  Daily rainfall in Dakor basin for the year 1994 

Pan-ev aporation and potential evapotranspiration 1994

SEGMENT 01 MET VALSAD P47 MA1

Time
12-1212-1113-1013-0914-0815-0715-0616-0516-0417-0315-0216-01

P
ot

en
tia

l E
va

po
tr

an
sp

ira
tio

n 
  [

m
m

]

12

11

10

9

8

7

6

5

4

3

2

1

Figure 3.20: Pan evaporation and potential evapotranspiration near Dakor 1994 
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Figure 3.21: Hourly water levels Dakor 1994 
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Water levels and discharges for 1994 
The runoff series for Dakor are derived from the hourly water level record available for that station. The 
entire water level record for 1994 is presented in Figure 3.21. 

The water levels are seen to vary between 45 to over 53 m+MSL at Dakor, i.e. 8 m difference. One also 
observes that the peaks are rounded, quite different from the water level record at Bilodra, available in your 
database. 

The water level data are transformed into discharges by means of stage-discharge relations. The relations 
were fitted to the data presented in Figure 3.22. Two rating curves were developed, one valid till 14 July 
and one valid thereafter. About the cause of the change no further investigations were made, but the 
changes are most likely caused by shifts in the control section due to morphology. Note that the change 
takes place after the occurrence of the first peaks in 1994. The rating curves fitted to the data from 15 July 
onward are shown in Figure 3.23.  

Note that a few measurements in the higher flow region have been omitted. These data referred to a falling 
stages but these data plotted to the right of the curve matching with the highest flows during steady stages. 
For a stable channel the data should have plotted to the left of the curve and from that point of view were 
considered inconsistent. One reason for plotting right might have been that the downstream control section 
has drastically eroded during the passage of the flood wave. 

The resulting hourly discharge hydrograph at Dakor for 1994 is shown in Figure 3.24. 

Stage-discharge data station Dakor 1994

Discharge
650600550500450400350300250200150100500

St
ag
e

54

53

52

51

50

49

48

47

46

45

Figure 3.22: Stage-discharge measurements of 1994 for station Dakor 

Rating Curve Dakor 15/08 - 31/12/1994
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Figure 3.23: Stage-discharge relation for station Dakor (15/8 – 31/12/1994) 
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The discharges in m3/s have subsequently been transformed to hourly runoff values in mm/hr by 
multiplying the discharges with 3600 (s)/area(km2) x 10-3. Subsequently, the hourly runoff values have been 
aggregated to daily values, in a manner equal to the way daily rainfall data are treated, i.e. from 8.00 hrs at 
day 1 to 8.00 hrs at day 2, reported as a daily value for day 2. This requires special attention while 
executing the aggregation. 

The total runoff for the year 1994 amounted 1062 mm, i.e. a runoff coefficient of 72%. 

The daily rainfall, potential evapotranspiration and runoff data for 1994 are tabulated in Tables 3.3, 3.4 and 
3.5. 
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Figure 3.24: Hourly runoff at Dakor for 1994 

Basin rainfall and runoff at Dakor 1994
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Figure 3.25: Daily rainfall and runoff for 1994 for Dakor basin 

Estimation of parameters 
The model parameter estimation based on the data for the year 1994 is carried along the lines as 
presented in the text in Chapter 3.2.4. 

Segment area 
Segment area is derived from the basin boundary data in HYMOS:  

Segment area = 430.59 km2. 

Lower zone primary free water storage parameters LZPK and LZFPM 
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Reference is made to the semi-logarithmic plot of the runoff series, shown in Figure 3.26. Lowest runoff 
values with an exponential decay showing as a straight line in the plot are present at the end of October 
and in November, see Figure 3.27. A straight line is fitted the observations and the drainage factor LZPK is 
determined from the runoff values at 31/10 and 12/11, which are solely attributed to runoff from the lower 
zone primary free water storage. It then follows from equation 

          (3.8) 00R
KP =


=


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= 986.
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23.
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Hence the drainage factor becomes with equation (3.9): 

LZPK = 1 – KP = 1 – 0.986 = 0.014 

To arrive at a value for the capacity of the lower zone primary free water storage an estimated maximum 
runoff value from that reservoir is required RP max. Assuming that after a very wet period this maximum is 
achieved one can estimate this maximum by extrapolating the primary baseflow recession curve backward 
in time up to the runoff peak on 8 September. Under the presumption that this storm has completely filled 
the lower zone primary free water storage a maximum value of approximately 0.6 mm/day can be read 
from the semi-log plot. (This value can also be computed from the value at 31/11 using KP and the time 
interval from 8/9 till 31/10: QP(8/9) = QP(31/11)KP–53 = 0.57 mm/day). 

mm45
014.0

6.0
LZPK

maxQPLZFPM ≈≈=

Hence the LZFPM becomes with equation (3.10): 

Note that the value is rounded to the nearest 5 mm, in view of the uncertainties involved. 

It is noted here that extrapolation of the primary baseflow recession curve backward from 31/10 to 8/9 is 
not entirely correct as in between some recharge may have occurred by the storm between 16 and 18/9. 
On the other hand we are not entirely sure that on 8/9 the lower free water zone was completely filled. 

Abstractions from river flow may affect the result. Abstractions may be observed from recession on semi-
log plot failing to fall to a straight line (it curves downward in the course of time). By adding a constant 
amount a straight line can often be obtained. The effect is illustrated in Figure 3.28. 

 

Semi-log plot of Dakor hydrograph
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Figure 3.26: Semi-logarithmic plot of runoff series for Dakor 1994 
 

It is observed that the result is rather sensitive to abstractions and due care should be given to this 
phenomenon. If abstractions are present and no corrections are made than the estimated LZPK-value will 
be too high.  

Question: what would be the estimates for LZPK and LZFPM if 0.1 mm/day is added to the recession 
curve?? 
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Figure 3.28: Detail of semi-log plot of Dakor hydrograph for estimation of lower  
  zone free water storage parameters 
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Figure 3.29: Effect of abstraction of river flow on primary baseflow parameters 
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Daily data and statistics of series SEGMENT 01  MPC   Year = 1994 

 

  Day      Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec 

    1      .00       .00       .00       .00       .00       .00      1.54      3.23     38.90       .00       .00       .00  

    2      .00       .00       .00       .00       .00       .00      1.88     63.02     22.35       .00       .00       .00  

    3      .00       .00       .00       .00       .00       .00       .57     18.01     13.99       .00       .00       .00  

    4      .00       .00       .00       .00       .00       .00     10.19      1.00       .20       .00       .00       .00  

    5      .00       .00       .00       .00       .00       .00     80.43      2.83      2.52       .00       .00       .00  

  

    6      .00       .00       .00       .00       .00       .00     20.56       .41      9.69       .00       .00       .00  

    7      .00       .00       .00       .00       .00       .00     12.47      2.21    258.01*      .00       .00       .00  

    8      .00       .00       .00       .00       .00       .00      6.53     17.11     36.08-      .00       .00       .00  

    9      .00       .00       .00       .00       .00       .00     23.00      1.44      3.08       .00       .00       .00  

   10      .00       .00       .00       .00       .00       .00     22.04      2.92      3.64       .00       .00       .00  

  

   11      .00       .00       .00       .00       .00      1.00     11.28      4.42      1.90       .00       .00       .00  

   12      .00       .00       .00       .00       .00      3.00      2.38      5.58      6.83       .00       .00       .00  

   13      .00       .00       .00       .00       .00     30.36      4.53      3.55      4.67       .00       .00       .00  

   14      .00       .00       .00       .00       .00      1.28     10.52      6.26     24.53       .00       .00       .00  

   15      .00       .00       .00       .00       .00      5.55      2.08      5.02     10.62       .00       .00       .00  

  

   16      .00       .00       .00       .00       .00       .11      3.33      2.10     48.08       .00       .00       .00  

   17      .00       .00       .00       .00       .00       .00     10.20     11.23      5.60       .00       .00       .00  

   18      .00       .00       .00       .00       .00       .00      7.94      5.51       .00       .00       .00       .00  

   19      .00       .00       .00       .00       .00       .00       .84     11.15       .00       .00       .00       .00  

   20      .00       .00       .00       .00       .00       .00     22.50     96.36       .00       .00       .00       .00  

  

   21      .00       .00       .00       .00       .00       .00     30.31       .96       .00       .00       .00       .00  

   22      .00       .00       .00       .00       .00       .00     18.47      5.93       .00       .00       .00       .00  

   23      .00       .00       .00       .00       .00      8.25     11.95       .00       .00       .00       .00       .00  

   24      .00       .00       .00       .00       .00      8.55      8.74       .00       .00       .00       .00       .00  

   25      .00       .00       .00       .00       .00     27.80      4.92       .70       .00       .00       .00       .00  

Table 3.3: Daily rainfall in Dakor segment for 1994 



 

 

   26      .00       .00       .00       .00       .00     13.94     54.55      3.34       .00       .00       .00       .00  

   27      .00       .00       .00       .00       .00      3.12     13.91      6.81       .00       .00       .00       .00  

   28      .00       .00       .00       .00       .00      3.22      1.79     34.75       .00       .00       .00       .00  

   29      .00 *********       .00       .00       .00     91.97      3.22       .33       .00       .00       .00       .00  

   30      .00 *********       .00       .00       .00     61.31      6.37       .00       .00       .00       .00       .00  

   31      .00 *********       .00 *********       .00 *********       .00      8.26 *********       .00 *********       .00  

 

 Data       31        28        31        30        31        30        31        31        30        31        30        31 

 Eff.       31        28        31        30        31        30        31        31        30        31        30        31 

 Miss        0         0         0         0         0         0         0         0         0         0         0         0 

 Sum       .00       .00       .00       .00       .00    259.46    409.04    324.44    490.70       .00       .00       .00 

 Mean      .00       .00       .00       .00       .00      8.65     13.19     10.47     16.36       .00       .00       .00 

 Min.      .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00 

 Max.      .00       .00       .00       .00       .00     91.97     80.43     96.36    258.01       .00       .00       .00 

 

 Annual values: 

 Data               365 * Sum            1483.63 * Minimum            .00 * Too low              0 

 Effective          365 * Mean              4.06 * Maximum         258.01 * Too high             1 
 Missing              0 



 

 Daily data and statistics of series SEGMENT 01  MET   Year = 1994 

 

  Day      Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec 

    1     5.04      3.36      4.97      6.93      5.25      7.49       .98      1.12      2.17      4.62      3.43      2.31  

    2     6.86      3.15      5.74      6.16      6.72      6.93      1.05      1.40      2.10      4.97      3.71      1.96  

    3     6.93      4.13      5.60      6.72      6.30      6.86      3.08       .49       .98      4.55      3.99      2.80  

    4     6.23      3.43      5.18      5.88      7.07      7.00      2.66      2.45      2.24      4.97      4.13      2.80  

    5     6.16      2.87      5.32      3.01      6.79      6.72      1.47      1.61      2.10      4.83      4.48      3.29  

  

    6     4.90      3.01      4.69      6.51      6.51      7.42       .70      1.89      1.12      5.46      5.18      3.08  

    7     4.76      3.71      5.39      7.56      6.79      7.84      2.73      2.59       .77      4.83      4.20      2.66  

    8     4.97      3.99      5.60      6.86      7.07      7.98      2.73      2.59       .42      3.22      4.34      2.80  

    9     4.76      3.64      6.65      6.65      6.44      7.70      1.89      1.54       .84      4.41      4.34      2.38  

   10     5.32      3.99      5.25      6.58      6.79      7.49      2.24      1.54      3.29      4.20      4.41      2.38  

  

   11     3.22      3.36      4.20      7.07      5.32      6.02      2.17      1.12      1.68      4.48      4.27      3.15  

   12      .84      3.71      5.60      7.14      7.56      5.60      2.03      1.89      2.59      4.06      3.99      2.80  

   13     1.26      4.27      3.99      7.00      6.79      4.06      2.10      1.26      2.59      4.06      3.22      3.22  

   14     2.38      4.62      4.06      8.26      7.91      3.85      2.10       .70      2.31      3.92      3.22      2.38  

   15     2.17      3.64      3.71      6.93      6.86      3.85      1.82      2.45      1.82      3.85      3.71      2.52  

  

   16     2.31      4.55      4.69      7.35      7.77      1.75      1.68       .98      2.17      3.85      3.36      2.45  

   17     2.80      4.20      6.30      7.35      7.70      1.68      3.57      2.45      1.75      4.41      3.22      2.59  

   18     3.01      4.27      6.02      7.14      6.65      3.92      2.45      2.03      2.87      4.97      4.06      2.80  

   19     2.73      4.55      6.30      6.79      7.21      4.97      1.75      2.80      5.32      4.90      4.06      3.64  

   20     2.45      4.06      6.09      7.35      7.21      5.60      1.82      2.77      4.06      4.55      3.57      3.71  

  

   21     2.80      3.29      4.97      7.42      7.00      5.81      1.40      2.73      5.18      3.92      4.48      3.50  

   22     3.43      3.64      5.11      7.07      7.56      5.25       .98      2.80      3.15      2.94      4.34      3.01  

   23     2.52      3.92      6.23      7.63      7.56      2.52      2.66      3.01      3.08      3.85      4.13      2.80  

   24     3.22      4.62      4.90      6.37      5.95      1.68      2.31      4.20      4.13      3.92      3.78      3.22  

  25     3.43      4.48      4.27      4.97      6.37       .63      2.10      1.68      3.92      3.85      3.50      2.38 



 

   26     3.50      4.97      5.25      6.09      7.63      1.82      2.59      2.45      3.50      3.64      3.01      2.52  

   27     3.22      4.76      5.39      6.51      7.42      2.45      1.54      1.19      4.13      3.29      2.31      2.45  

   28     3.50      4.69      6.86      5.60      7.56      3.08      1.47       .77      4.27      3.22      2.52      2.31  

   29     3.57 *********      7.07      5.60      7.77      1.61      2.45      2.45      4.55      3.64      2.31      2.87  

   30     3.78 *********      6.93      5.32      7.28      1.47      1.68      2.59      4.76      3.22       .91      2.03  

   31     3.43 *********      7.35 *********      7.21 *********      2.17      2.10 *********      3.50 *********      2.66  

 

 Data       31        28        31        30        31        30        31        31        30        31        30        31 

 Eff.       31        28        31        30        31        30        31        31        30        31        30        31 

 Miss        0         0         0         0         0         0         0         0         0         0         0         0 

 Sum    115.50    110.88    169.68    197.82    216.02    141.05     62.37     61.63     83.86    128.10    110.18     85.47 

 Mean     3.73      3.96      5.47      6.59      6.97      4.70      2.01      1.99      2.80      4.13      3.67      2.76 

 Min.      .84      2.87      3.71      3.01      5.25       .63       .70       .49       .42      2.94       .91      1.96 

 Max.     6.93      4.97      7.35      8.26      7.91      7.98      3.57      4.20      5.32      5.46      5.18      3.71 

 

 Annual values: 

 Data               365 * Sum            1482.56 * Minimum            .42 * Too low              0 
 Effective          365 * Mean              4.06 * Maximum           8.26 * Too high             0 



 

 Daily data and statistics of series Dakor       HRC   Year = 1994 

 

  Day      Jan       Feb       Mar       Apr       May       Jun       Jul       Aug       Sep       Oct       Nov       Dec 

    1  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    29.42      1.48      3.83      1.13       .64   -999.99* 

    2  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    30.15       .87      5.99      1.01       .64   -999.99* 

    3  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    15.36      4.82     12.58      1.11       .64   -999.99* 

    4  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     4.93     10.00     20.27      1.13       .62   -999.99* 

    5  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     3.55     10.23     19.47       .97       .45   -999.99* 

  

    6  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    20.30      6.55     12.29      1.07       .54   -999.99* 

    7  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    37.48      4.55     20.33      1.07       .54   -999.99* 

    8  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    29.02      2.68    110.92*     1.06       .51   -999.99* 

    9  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    11.34      2.14     73.86      1.02       .52   -999.99* 

   10  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     7.84      1.53     56.92       .95       .47   -999.99* 

  

   11  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*    11.02       .77     43.44       .94       .33   -999.99* 

   12  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     6.11       .48     32.67       .96       .23   -999.99* 

   13  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     2.58       .41     20.85       .90       .41   -999.99* 

   14  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     1.18       .69      9.99       .81       .42   -999.99* 

   15  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     2.27       .80      6.51       .77       .42   -999.99* 

  

   16  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     2.89      1.05     23.10       .75   -999.99*  -999.99* 

   17  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*      .72       .78     19.58       .73   -999.99*  -999.99* 

   18  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*      .65       .31      1.03     23.90       .69   -999.99*  -999.99* 

   19  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*      .20      1.73      1.65     19.49       .61   -999.99*  -999.99* 

   20  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     4.56      6.39      9.09       .56   -999.99*  -999.99* 

  

   21  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     3.68     22.37      4.67       .49   -999.99*  -999.99* 

   22  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     4.86     24.74      3.29       .38   -999.99*  -999.99* 

   23  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     6.62     21.46      2.35       .39   -999.99*  -999.99* 

   24  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     8.27     14.03      2.07       .41   -999.99*  -999.99* 

  25  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     7.23      7.00      1.91       .44   -999.99*  -999.99*



 

   26  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     5.18      3.72      1.69       .38   -999.99*  -999.99* 

   27  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     2.44      9.25      1.82      1.47       .35   -999.99*  -999.99* 

   28  -999.99*  -999.99*  -999.99*  -999.99*  -999.99*     1.43      8.47      2.18      1.32       .37   -999.99*  -999.99* 

   29  -999.99**********   -999.99*  -999.99*  -999.99*      .73      6.16      4.69      1.32       .30   -999.99*  -999.99* 

   30  -999.99**********   -999.99*  -999.99*  -999.99*     2.23      4.33      4.38      1.28       .28   -999.99*  -999.99* 

   31  -999.99**********   -999.99**********   -999.99**********      2.79      3.63 *********       .27 *********   -999.99* 

 

 Data       31        28        31        30        31        30        31        31        30        31        30        31 

 Eff.        0         0         0         0         0         6        31        31        30        31        15         0 

 Miss       31        28        31        30        31        24         0         0         0         0        15        31 

 Sum   -999.99   -999.99   -999.99   -999.99   -999.99      7.69    289.61    168.95    566.45     22.30      7.37   -999.99 

 Mean  -999.99   -999.99   -999.99   -999.99   -999.99      1.28      9.34      5.45     18.88       .72       .49   -999.99 

 Min.  -999.99   -999.99   -999.99   -999.99   -999.99       .20       .31       .41      1.28       .27       .23   -999.99 

 Max.  -999.99   -999.99   -999.99   -999.99   -999.99      2.44     37.48     24.74    110.92      1.13       .64   -999.99 

  

 Annual values: 

 Data               365 * Sum            1062.37 * Minimum            .20 * Too low              0 

 Effective          144 * Mean              7.38 * Maximum         110.92 * Too high             1 
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Figure 3.29: Part of hydrograph used for LZTWM 

Assuming that changes in lower zone free water storages as well as the upper zone storages are small, 
from a simple waterbalance computation for the period 29/6 to 14/7 the following change in the LZTW 
storage is observed 

∆LZTWC = ΣP – ΣR - ΣE = 361 – 217 – 31 = 113 mm 

Note that the evaporation is taken as potential as the UZTW storage was filled. 

The value obtained in this manner is certainly a lower limit as by mid July there is still capacity in the lower 
zone. The first estimate is therefore set as: 

LZTWM = 150 mm 

Extending the period to 24/9 leads to a value of 1377 – (1016 + 180) = 181 mm, but then corrections for the 
free lower zone storages have to be taken into account as well. Also the errors may occur, stemming from 
the fact that the evaporation is not at its potential rate etc. 
Percolation parameters ZPERC and REXP 

From equation 17 a first estimate for ZPERC can be obtained. It requires the value of PBASE: 

PBASE = LZFPM x LZPK + LZFSM x LZSK = 45 x (0.014 + 0.067) = 3.64mm/day 

Hence with equation 17: 

57
3.64

3.644545150
PBASE

PBASELZFPMLZFSMLZTWMZPERC =
−++

=
−++

=

So as a first approximation a value of 60 is assumed. 

REXP is estimated at 1.5 as the soils appear to be sandy, see Table 3.1. 

Unit hydrograph parameters 

The concentration time for the Dakor basin can be estimated by assuming a celerity between 2 to 3 m/s or 
7 to 10 km/hr during floods. With a total river length of 53 km it implies that the concentration time will be in 
the order of 5 to 8 hrs, which is much smaller than the time interval to be used in the simulation. The 
hydrograph though shows that the surface runoff is considerably delayed. An approximation for the unit 
hydrograph components based on inspection of the runoff compared to the rainfall gives the following 
hydrograph values: 

0.15, 0.40, 0.30, 0.15 

The Clark procedure could also be used here. This is discussed below. 

From Figure 3.30 a concentration time is computed from a comparison of the rainfall and runoff record. The 
time between the cessation of rainfall to the inflection point on the falling limb of the hydrograph is a good 
indicator for the time of concentration Tc. From Figure 3.30 a value of 2 days (± 0.5 days) is read. 
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Figure 3.30: Estimation of the time of concentration from rainfall and runoff record. 

In the time area diagram 2 intervals are considered. The time area diagram presents the hydrograph 
resulting from an instantaneous supply of 1 mm over the catchment. Since we consider two intervals only 
one isochrone is considered. The isochrone separate the segment into two parts where, given the shape of 
the segment, the lower part constitutes about 40% of the segment and the upper part 60%. Again great 
detail is not required as we are dealing with daily data in a small segment, with a Tc value somewhere 
between 1.5  and 2.5 days. The approximate time area diagram is presented in Figure 3.32.  

The next step is to estimate the reservoir coefficient k. This coefficient is obtained from the slope of the 
recession of the surface water hydrograph. For this Figure 3.31 is observed. If the baseflow part is 
subtracted from the actual flow values then the surface runoff is seen to reduce from 18 mm/day to 2 
mm/day in 2 days. Hence, k is obtained from: 
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CLARK k-parameter estimation

k = -(t2-t1)/ln(Q2/Q1)=0.91 days
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k = -(t2-t1)/ln(Q2/Q1)=0.91 daysk = -(t2-t1)/ln(Q2/Q1)=0.91 days

Figure 3.31: Estimation of reservoir coefficient parameter in Clark method 

Note that for the estimation of k one should particularly concentrate on the surface runoff part and not on 
the interflow part as interflow is already delayed by the UZFW reservoir. 

The routing coefficients then become according to equation 23 with ∆t = 1 day and k = 0.91 days: 

29.071.011c12c;71.0
2/191.0

1
2/tk

t1c =−=−==
+

=
∆+
∆

=
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Hence, the routing equation becomes: 

Qi+1 = c1 x Iav + c2 x Qi  =  0.71 x Iav + 0.29 x Qi, etc. 

The result is the instantaneous unit hydrograph. The 1-day unit hydrograph is obtained by averaging over 
successive intervals: Qday, i = ½(Qinst,i + Qinst,i-1). 

The routing is carried out in the Table below, and the result is presented in Figure 3.32. 

 
Time Input Iav Q out-inst Q out-day 
0 0 0.00 0.00 
1 0.4 0.28 0.14 
2 0.6 0.51 0.40 
3 0 0.15 0.33 
4 0 0.04 0.10 
5 0 0.01 0.03 
6 0 0.00 0.01 
7 0 0.00 0.00 

Table 3.6 Conversion of time area diagram into 1-day unit hydrograph 
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Figure 3.32: Time-area diagram and instantaneous and 1 day unit hydrograph 

The values of the last column in the Table are input to the model as the 1-day unit hydrograph. 

Other parameters  

The SIDE parameter needs special attention in the Dakor case as the actual groundwater tables are far 
below the drainage base. It implies that water from the lower zone free water reservoirs will percolate 
further down to the deep groundwater table. To estimate the value of SIDE the unobserved portion of 
groundwater should be determined. Say, 100 mm is withdrawn from aquifer by mining and the groundwater 
tables are declining annually with 2 m, and the specific yield is 0.3. Then 100 mm + 0.3 x 2 m = 160 mm is 
withdrawn from the aquifer. This value has to be compared with the observed baseflow. Then SIDE follows 
from: 

flowbaseobserved
160

flowbaseobserved
flowbaseunobservedSIDE ==

The mined amount of groundwater (100 mm) is to be added to the model as rainfall.  

The other parameters are set to their nominal values as the hydrograph do not permit estimation of e.g. 
PCTIM or ADIMP. For PCTIM the very first period in the monsoon would have been appropriate, but water 
level observations started too late for that and some days have missing values. The total list of first 
estimate of the parameters is shown below. 

The initial contents when starting the run on 1/1/94 by assuming that in September the previous year all 
free base flow reservoirs were full. The potential evapotranspiration from September to January amounts 
about 400 mm so the tension water reservoirs are expected to have dried up. 
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Figure 3.33: List of input parameters for Sacramento model 

First runs  
The results of the first run are shown in Figure 3.34. The accumulated difference between observed and 
simulated run off closes at – 41 mm. Matching the water balance is the most important first step while 
continuing with calibration. By adding 50 mm to the LZTWM the difference is seen to be nearly eliminated, 
Figure 3.35. Then the fine-tuning can start. Particular attention is required to parameter SIDE. From the 
first run an observed base flow of 288 mm. With the assumed removal of 160 mm an estimate for the SIDE 
parameter would be 160/288 = 0.56.  
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Figure 3.34: Observed and simulated runoff, first run  
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Figure 3.35: Observed and simulated flow, LZTWM increased to 200 mm 
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Simulation of rainfall-runoff process: Land Phase 

 

     Catchment name    = Kheda basin          

 

     Number of segments:  1 

 

 Rainfall-runoff simulation of segment  1 

 

 Catchment: Kheda basin             Segment: Dakor                

 

Rainfall series   : SEGMENT 01  MPC      

Evaporation series: SEGMENT 01  MET      

Discharge series  : Dakor       HRC      

 

                   UZTW  UZFW  LZTW LZFSW LZFPW 

 Capacaty  (mm)    60.0  30.0 200.0  45.0  45.0 

 Initial content     .0    .0    .0    .0  10.0 

 

 UZK   =      .3000 (1/DAY)     RSERV =      .2000 (-) 

 LZSK  =      .0670 (1/DAY)     PCTIM =      .1000 (-) 

 LZPK  =      .0140 (1/DAY)     ADIMP =      .1000 (-) 

 ZPERC =    60.0000 (-)         SARVA =      .0000 (-) 

 REXP  =     1.5000 (-)         SIDE  =      .0000 (-) 

 PFREE =      .3000 (-)         SSOUT =      .0000 (mm/dt) 

 

 Given unit hydrograph components:    

     .150    .400    .300    .150 

 

 Applied unit hydrograph components:    

     .150    .400    .300    .150    .000 

 

 Given Rainfall Intensity Components (PT1,PT2): 

     .000    .000 

 



Time step results 

 Year Mo Da Ho    PRECIP     UZTWC     UZFWC     LZTWC     LZFSC     LZFPC    MDISCH    CDISCH   ACCDIFF 

  

 1994  6 16  0       .11     35.58       .00      1.27       .00       .31   -999.99       .72       .00 

 1994  6 17  0       .00     34.59       .00      1.26       .00       .30   -999.99       .19       .00 

 1994  6 18  0       .00     32.33       .00      1.26       .00       .30       .65       .09       .56 

 1994  6 19  0       .00     29.65       .00      1.24       .00       .29       .20       .00       .76 

 1994  6 20  0       .00     26.88       .00      1.23       .00       .29   -999.99       .00       .76 

 1994  6 21  0       .00     24.28       .00      1.22       .00       .29   -999.99       .00       .76 

 1994  6 22  0       .00     22.15       .00      1.20       .00       .28   -999.99       .00       .76 

 1994  6 23  0      8.25     29.47       .00      1.19       .00       .28   -999.99       .13       .76 

 1994  6 24  0      8.55     37.20       .00      1.19       .00       .27   -999.99       .46       .76 

 1994  6 25  0     27.80     60.00      4.60      1.19       .00       .27   -999.99      1.01       .76 

 1994  6 26  0     13.94     60.00     12.12      4.41       .69       .95   -999.99      1.70       .76 

 1994  6 27  0      3.12     60.00       .67     12.89      2.47      2.75      2.44      1.61      1.59 

 1994  6 28  0      3.22     60.00       .14     13.36      2.40      2.81      1.43      1.17      1.85 

 1994  6 29  0     91.97     60.00     30.00     13.46      2.27      2.80       .73     10.12     -7.55 

 1994  6 30  0     61.31     60.00     30.00     34.12      6.57      7.15      2.23     30.75    -36.07 

 1994  7  1  0      1.54     60.00       .89     54.89     10.64     11.45     29.42     33.01    -39.66 

 1994  7  2  0      1.88     60.00       .83     55.51     10.06     11.42     30.15     20.41    -29.91 

 1994  7  3  0       .57     57.49       .00     56.09      9.51     11.38     15.36      5.85    -20.40 

 1994  7  4  0     10.19     60.00      5.13     56.07      8.88     11.22      4.93       .91    -16.38 

 1994  7  5  0     80.43     60.00     30.00     59.66      9.08     11.80      3.55      8.98    -21.81 

 1994  7  6  0     20.56     60.00     20.10     80.49     13.14     15.90     20.30     22.39    -23.90 

 1994  7  7  0     12.47     60.00      9.74     94.56     15.44     18.53     37.48     18.12     -4.53 

 1994  7  8  0      6.53     60.00      3.80    101.38     15.97     19.63     29.02     10.48     14.01 

 1994  7  9  0     23.00     60.00     21.11    104.04     15.51     19.88     11.34      2.75     22.60 

 1994  7 10  0     22.04     60.00     19.80    118.82     17.93     22.48      7.84      3.29     27.15 

 1994  7 11  0     11.28     60.00      9.11    132.68     20.01     24.82     11.02      3.81     34.36 

 1994  7 12  0      2.38     60.00       .35    139.06     20.21     25.67      6.11      3.49     36.98 

 1994  7 13  0      4.53     60.00      2.43    139.30     18.91     25.35      2.58      2.54     37.03 

 1994  7 14  0     10.52     60.00      8.42    141.00     18.07     25.30      1.18      2.10     36.11 

 1994  7 15  0      2.08     60.00       .26    146.89     18.33     26.00      2.27      2.13     36.25 

 1994  7 16  0      3.33     60.00      1.65    147.07     17.15     25.67      2.89      1.99     37.15 
 1994  7 17  0     10.20     60.00      6.63    148.23     16.29     25.51       .72      1.90     35.98 



 1994  7 18  0      7.94     60.00      5.49    152.87     16.40     25.95       .31      2.08     34.21 

 1994  7 19  0       .84     59.09       .00    156.71     16.29     26.24      1.73      2.15     33.80 

 1994  7 20  0     22.50     60.00     19.80    156.70     15.20     25.87      4.56      2.30     36.05 

 1994  7 21  0     30.31     60.00     28.91    170.56     17.82     27.81      3.68      3.51     36.22 

 1994  7 22  0     18.47     60.00     17.49    190.79     21.98     30.74      4.86      4.90     36.18 

 1994  7 23  0     11.95     60.00     13.96    198.36     22.54     31.52      6.62      5.44     37.36 

 1994  7 24  0      8.74     60.00     11.43    200.00     24.30     32.98      8.27      5.20     40.43 

 1994  7 25  0      4.92     60.00      7.42    200.00     25.79     34.26      7.23      4.83     42.82 

 1994  7 26  0     54.55     60.00     30.00    200.00     25.95     34.79      5.18      8.88     39.12 

 1994  7 27  0     13.91     60.00     25.64    200.00     31.65     38.14      9.25     16.56     31.82 

 1994  7 28  0      1.79     60.00     13.19    200.00     34.44     39.95      8.47     15.36     24.92 

 1994  7 29  0      3.22     60.00      7.80    200.00     34.32     40.35      6.16     11.35     19.73 

 1994  7 30  0      6.37     60.00      8.86    200.00     33.34     40.31      4.33      6.21     17.84 

 1994  7 31  0       .00     57.83      4.68    200.00     32.68     40.34      2.79      5.01     15.63 

 1994  8  1  0      3.23     59.98      2.45    200.00     31.33     40.08      1.48      4.19     12.92 

 1994  8  2  0     63.02     60.00     30.00    200.00     29.72     39.69       .87      9.29      4.50 

 1994  8  3  0     18.01     60.00     30.00    200.00     34.09     41.29      4.82     19.79    -10.47 

 1994  8  4  0      1.00     59.37     15.74    200.00     36.86     42.36     10.00     19.23    -19.69 

 1994  8  5  0      2.83     60.00      9.45    200.00     36.77     42.49     10.23     14.19    -23.65 

 1994  8  6  0       .41     58.52      5.31    200.00     35.75     42.31      6.55      7.32    -24.42 

 1994  8  7  0      2.21     58.20      2.95    200.00     34.17     41.95      4.55      5.15    -25.02 

 1994  8  8  0     17.11     60.00     14.40    200.00     32.35     41.49      2.68      4.38    -26.72 

 1994  8  9  0      1.44     59.90      7.63    200.00     32.92     41.67      2.14      4.64    -29.23 

 1994  8 10  0      2.92     60.00      5.36    200.00     32.13     41.47      1.53      4.83    -32.53 

 1994  8 11  0      4.42     60.00      6.14    200.00     31.01     41.17       .77      4.52    -36.27 

 1994  8 12  0      5.58     60.00      6.88    200.00     30.17     40.94       .48      4.07    -39.86 

1994  8 13  0      3.55     60.00      5.81    200.00     29.60     40.76       .41      3.93    -43.38 

 1994  8 14  0      6.26     60.00      8.51    200.00     28.87     40.54       .69      3.94    -46.63 

 1994  8 15  0      5.02     60.00      6.83    200.00     28.84     40.50       .80      4.03    -49.85 

 1994  8 16  0      2.10     60.00      4.54    200.00     28.43     40.36      1.05      4.02    -52.83 

 1994  8 17  0     11.23     60.00     11.03    200.00     27.56     40.09       .78      3.97    -56.01 

 1994  8 18  0      5.51     60.00      8.86    200.00     28.32     40.27      1.03      4.20    -59.18 

 1994  8 19  0     11.15     60.00     12.73    200.00     28.45     40.28      1.65      4.61    -62.14 

 1994  8 20  0     96.36     60.00     30.00    200.00     29.43     40.54      6.39     16.12    -71.87 

 1994  8 21  0       .96     59.14     14.67    200.00     33.79     41.79     22.37     35.03    -84.52 



YEAR  MO  ND   PRECIP    E-POT    E-ACT   Runoff Baseflow  Storage    UZTWC    UZFWC    LZTWC    LZFSC    LZFPC    ADIMC 

 1994  8 26  0      3.34     53.43       .81    200.00     28.63     40.50      3.72      3.03    -70.96 

 1994  8 27  0      6.81     59.18       .40    200.00     26.82     39.97      1.82      2.69    -71.84 

 1994  8 28  0     34.75     60.00     30.00    200.00     25.11     39.43      2.18      3.90    -73.56 

 1994  8 29  0       .33     58.70     13.55    200.00     31.08     41.05      4.69      6.59    -75.46 

 1994  8 30  0       .00     56.17      7.03    200.00     31.70     41.24      4.38      7.31    -78.39 

 1994  8 31  0      8.26     60.00      6.14    200.00     30.88     41.03      3.63      6.29    -81.04 

 1994  9  1  0     38.90     60.00     30.00    200.00     30.06     40.81      3.83      6.94    -84.15 

 1994  9  2  0     22.35     60.00     30.00    200.00     34.24     41.98      5.99     11.83    -90.00 

 1994  9  3  0     13.99     60.00     29.49    200.00     37.11     42.82     12.58     14.48    -91.90 

 1994  9  4  0       .20     58.37     16.45    200.00     39.02     43.40     20.27     13.32    -84.95 

 1994  9  5  0      2.52     58.84      9.51    200.00     38.65     43.37     19.47      9.96    -75.43 

 1994  9  6  0      9.69     60.00     12.91    200.00     37.39     43.09     12.29      7.43    -70.57 

 1994  9  7  0    258.01     60.00     30.00    200.00     36.83     42.97     20.33     42.06    -92.30 

 1994  9  8  0     36.08     60.00     30.00    200.00     38.98     43.51    110.92    105.37    -86.75 

 1994  9  9  0      3.08     60.00     19.71    200.00     40.51     43.91     73.86     89.00   -101.89 

 1994  9 10  0      3.64     60.00     11.93    200.00     40.36     43.90     56.92     51.47    -96.43 

 1994  9 11  0      1.90     60.00      7.23    200.00     39.22     43.65     43.44     11.39    -64.38 

 1994  9 12  0      6.83     60.00      8.44    200.00     37.59     43.27     32.67      6.29    -38.01 

 1994  9 13  0      4.67     60.00      6.90    200.00     36.34     42.96     20.85      5.30    -22.46 

 1994  9 14  0     24.53     60.00     26.10    200.00     35.00     42.62      9.99      5.40    -17.87 

 1994  9 15  0     10.62     60.00     23.24    200.00     37.07     43.09      6.51      6.84    -18.20 

 1994  9 16  0     48.08     60.00     30.00    200.00     38.15     43.35     23.10     12.93     -8.03 

 1994  9 17  0      5.60     60.00     21.31    200.00     39.87     43.77     19.58     21.36     -9.81 

 1994  9 18  0       .00     57.13     12.45    200.00     40.05     43.83     23.90     18.16     -4.07 

 1994  9 19  0       .00     52.06      7.27    200.00     38.88     43.57     19.49     12.33      3.09 

 1994  9 20  0       .00     48.54      4.19    200.00     36.98     43.12      9.09      6.08      6.10 

 1994  9 21  0       .00     44.35      2.36    199.82     34.70     42.57      4.67      4.55      6.22 

 1994  9 22  0       .00     42.02      1.29    199.55     32.50     42.00      3.29      3.53      5.98 

  
 etc. 



 Summary of values (in mm) 

================================== 

 

 YEAR  MO  ND   PRECIP    E-POT    E-ACT   Runoff Baseflow  Storage    UZTWC    UZFWC    LZTWC    LZFSC    LZFPC    ADIMC 

  

 1994 

        1 396      .00   115.50    14.07      .92      .92    26.11      .06      .00    27.14      .00     2.09    26.81 

        2 424      .00   110.88     8.56      .54      .54    17.00      .01      .00    17.66      .00     1.41    17.42 

        3 455      .00   169.68     7.67      .40      .40     8.93      .00      .00     9.13      .00      .91     9.00 

        4 485      .00   197.82     4.41      .25      .25     4.27      .00      .00     4.22      .00      .59     4.16 

        5 516      .00   216.02     2.16      .17      .17     1.94      .00      .00     1.82      .00      .38     1.79 

        6 546   259.46   141.05    29.13    51.18      .62   181.10    60.00    30.00    34.12     6.57     7.15   136.21 

        7 577   409.04    62.37    56.05   237.92    39.78   296.17    57.83     4.68   200.00    32.68    40.34   248.38 

        8 608   324.44    61.64    55.20   265.62    66.07   299.79    60.00     6.14   200.00    30.88    41.03   255.94 

        9 638   490.70    83.86    71.68   482.12    69.15   236.69    24.04      .00   189.27    18.78    37.56   209.61 

       10 669      .00   128.10    76.79    23.91    23.91   135.98     2.63      .00   125.22     2.19    24.26   125.40 

       11 699      .00   110.18    40.44     8.23     8.23    87.31      .39      .00    82.42      .27    15.89    81.20 
       12 730      .00    85.47    21.04     4.70     4.70    61.57      .09      .00    59.29      .03    10.27    58.22 
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4 ANALYSIS OF RAINFALL DATA 

4.1 GENERAL  

The purpose of hydrological data processing software is not primarily hydrological analysis. 
However, various kinds of analysis are required for data validation and further analysis may be 
required for data presentation and reporting. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

The types of processing considered in this module are: 

checking data homogeneity 

computation of basic statistics 

annual exceedance rainfall series 

fitting of frequency distributions 

frequency and duration curves 

Most of the hydrological analysis for purpose of validation will be carried out at the Divisional and 
State Data Processing Centres and for the final presentation and reporting at the State Data 
Processing Centres. 

 
Reference is made to Annex 1 for a review of statistics relevant for rainfall data. 
 

4.2 CHECKING DATA HOMOGENEITY 

For statistical analysis rainfall data from a single series should ideally possess property of 
homogeneity - i.e. properties or characteristics of different portion of the data series do not vary 
significantly. 

Rainfall data for multiple series at neighbouring stations should ideally possess spatial homogeneity. 

Tests of homogeneity is required for validation purposes and there is a shared need for such tests 
with other climatic variables. The following test have been described in Volume 8, Operational Manual 
Part II: Secondary Validation: 

Secondary validation of rainfall data 
a) Spatial homogeneity testing 

b) Consistency tests using double mass curves 

 
Correcting and completing rainfall data 
a) Adjusting rainfall data for long-term systematic shifts - double mass curves 

 
Secondary validation of climatic data 
a) Single series tests of homogeneity, including trend analysis, mass curves, residual mass 

curves, Student’s t and Wilcoxon W-test on the difference of means and Wilcoxon-Mann-
Whitney U-test to investigate if the sample are from same population. 

b) Multiple station validation including comparison plots, residual series, regression analysis and 
double mass curves. 
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4.3 COMPUTATION OF BASIC STATISTICS 

Basic statistics are widely required for validation and reporting. The following are commonly used: 

arithmetic mean • 

• 

• 

• 

median - the median value of  a ranked series Xi 

mode - the value of X which occurs with greatest frequency or the middle value of the class with 
greatest frequency 

standard deviation - the root mean squared deviation Sx : 

( )
1N

XX
S

N

1i

2
i

X −

∑ −
= =                     (4.1) 

skewness and kurtosis • 

In addition empirical frequency distributions can be presented as a graphical representation of the 
number of data per class and as a cumulative frequency distribution. From these selected values of 
exceedence probability or non-exceedence probability can be extracted, e.g. the daily rainfall which 
has been excceded 1%, 5% or 10% of the time. 

Example 4.1 

Basic statistics for monthly rainfall data of MEGHARAJ station (KHEDA catchment) is derived for the period 
1961 to 1997. Analysis is carried out taking the actual values and all the months in the year. The results of 
analysis is given in Table 4.1 below. The frequency distribution and the cumulative frequency is worked out 
for 20 classes between 0 and 700 mm rainfall and is given in tabular results and as graph in Fig. 4.1. 
Various decile values are also listed in the result of the analysis. 

Since actual monthly rainfall values are considered it is obvious to expect a large magnitude of skewness 
which is 2.34 and also the sample is far from being normal and that is reflected in kurtosis (=7.92). The 
value of mean is larger then the median value and the frequency distribution shows a positive skew. From 
the table of decile values it can may be seen that 70 % of the months receive less than 21 mm of rainfall. 
From the cumulative frequency table it may be seen that 65 percent of the months receive zero rainfall 
(which is obvious to expect in this catchment) and that there are very few instances when the monthly 
rainfall total is above 500 mm. 

 

First year  =  1962 Last year   =  1997 
Actual values are used 

 
Basic Statistics: 
      Mean              = .581438E+02 
      Median            = .000000E+00 
      Mode              = .175000E+02 
      Standard deviation= .118932E+03 
      Skewness          = .234385E+01 
      Kurtosis          = .792612E+01 
      Range             = .000000E+00 to .613500E+03 
      Number of elements=         420 
      Decile               Value 
        1               .000000E+00 
        2               .000000E+00 
        3               .000000E+00 
        4               .000000E+00 
        5               .000000E+00 
        6               .000000E+00 
        7               .205100E+02 
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 T
  

Data Proc
        8               .932474E+02 
        9               .239789E+03 
 
Cumulative frequency distribution and histogram 
       Upper class limit   Probability   Number of elements 
        .000000E+00         .658183           277. 
        .350000E+02         .729543            30. 
        .700000E+02         .769981            17. 
        .105000E+03         .815176            19. 
        .140000E+03         .836584             9. 
        .175000E+03         .867507            13. 
        .210000E+03         .881779             6. 
        .245000E+03         .903187             9. 
        .280000E+03         .917460             6. 
        .315000E+03         .934110             7. 
        .350000E+03         .950761             7. 
        .385000E+03         .955519             2. 
        .420000E+03         .967412             5. 
        .455000E+03         .981684             6. 
        .490000E+03         .986441             2. 
        .525000E+03         .988820             1. 
        .560000E+03         .995956             3. 
        .595000E+03         .995956             0. 
        .630000E+03         .998335             1. 
        .665000E+03         .998335             0.
able 4.1: Computational results of the basic statistics for monthly rainfall at  
 MEGHARAJ 

Frequency Distribution for Monthly Rainfall (MEGHARAJ: 1962 - 1997)
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Figure. 4.1: Frequency and cumulative frequency plot of monthly rainfall at  
MEGHARAJ station 
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4.4 ANNUAL EXCEEDANCE RAINFALL SERIES 

The following are widely used for reporting or for subsequent use in frequency analysis of extremes: 

• maximum of a series. The maximum rainfall value of an annual series or of a month or season 
may be selected using HYMOS. All values (peaks) over a specified threshold may also be 
selected. Most commonly for rainfall daily maxima per year are used but hourly maxima or N-
hourly maxima may also be selected. 
minimum of a series. As the minimum daily value with respect to rainfall is frequently zero this is 
useful for aggregated data only. 

• 

• 
• 
• 
• 
• 
• 
• 

 

4.5 FITTING OF FREQUENCY DISTRIBUTIONS 

A common use of rainfall data is in the assessment of probabilities or return periods of given rainfall at 
a given location. Such data can then be used in assessing flood discharges of given return period 
through modelling or some empirical system and can thus be applied in schemes of flood alleviation 
or forecasting and for the design of bridges and culverts. 

Frequency analysis usually involves the fitting of a theoretical frequency distribution using a selected 
fitting method, although empirical graphical methods can also be applied. The fitting of a particular 
distribution implies that the rainfall sample of annual maxima were drawn from a population of that 
distribution. For the purposes of application in design it is assumed that future probabilities of 
exceedence will be the same as past probabilities. However there is nothing inherent in the series to 
indicate whether one distribution is more likely to be appropriate than another and a wide variety of 
distributions and fitting procedures has been recommended for application in different countries and 
by different agencies. Different distributions can give widely different estimates, especially when 
extrapolated or when an outlier (an exceptional value, well in excess of the second largest value) 
occurs in the data set. Although the methods are themselves objective, a degree of subjectivity is 
introduced in the selection of which distribution to apply. 

These words of caution are intended to discourage the routine application and reporting of results of 
the following methods without giving due consideration to the regional climate. Graphical as well as 
numerical output should always be inspected. Higher the degree of aggregation of data, more normal 
the data will become.  

The following frequency distributions are available in HYMOS: 

Normal and log-normal distributions 
Pearson Type III or Gamma distribution 
Log-Pearson Type III 
Extreme Value type I (Gumbel), II, or III 
Goodrich/Weibull distribution 
Exponential distribution 
Pareto distribution 

The following fitting methods are available for fitting the distribution: 

modified maximum likelihood 
• method of moments 

For each distribution one can obtain the following: 

estimation of parameters of the distribution  
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a table of rainfalls of specified exceedance probabilities or return periods with confidence limits 
results of goodness of fit tests 
• a graphical plot of the data fitted to the distribution 

Example 4.2 

Normal frequency distribution for rainfall data of MEGHARAJ station (KHEDA catchment) is fitted for three 
cases: (a) annual maximum values of daily data series, (b) annual maximum values of monthly data series 
and (c) actual annual rainfall values. 

Fig. 4.2 shows the graphical fitting of normal distribution for annual maximum values of daily series. The 
scatter points are the reduced variate of observed values and a best fit line showing the relationship 
between annual maximum daily with the frequency of occurrence on the basis of normal distribution. The 
upper and lower confidence limit (95 %) are also shown, the band width of which for different return periods 
indicate the level of confidence in estimation.  

Normal Distribution (Daily Rainfall - Annual Maximum)
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Figure 4.2:  Normal distribution for annual maximums of daily rainfall at MEGHARAJ 
station  

Figure 4.3 and Figure 4.4 shows the normal distribution fit for annual maximum of monthly data series and 
the actual annual values respectively. The level of normality can be seen to have increased in the case of 
monthly and yearly data series as compared to the case of daily data. 
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Normal Distribution (Monthly Rainfall - Annual Maximum)
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Figure 4.3: Normal distribution for annual maximums of monthly rainfall at MEGHARAJ 
station  

Normal Distribution (Actual Annual Rainfall)
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Figure 4.4:  Plot of normal distribution for actual annual rainfall at MEGHARAJ station  

The analysis results for the case of normal distribution fitting for actual annual rainfall is given in Table 5.1. 
There are 35 effective data values for the period 1962 to 1997 considered for the analysis. The mean 
annual rainfall is about 700 mm with an standard deviation of 280 mm and skewness and kurtosis of 0.54 
and 2.724 respectively. The observed and theoretical frequency for each of the observed annual rainfall 
value is listed in the increasing order of the magnitude. The results of a few tests on good of fit is also given 
in table. In the last, the rainfall values for various return periods from 2 to 500 years is given alongwith the 
upper and lower confidence limits. 
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 First year  =  1962          
 Last year   =  1997 
 
 Basic statistics: 
 Number of data     =    35 
 Mean               =    697.725 
 Standard deviation =    281.356 
 Skewness           =       .540 
 Kurtosis           =      2.724 
 
year  observation  obs.freq.   theor.freq.p  return-per. st.dev.xp  st.dev.p 
13         225.700       .0198       .0467        1.05       73.7978       .0256 
11         324.300       .0480       .0922        1.10       65.2262       .0383 
18         338.000       .0763       .1005        1.11       64.1160       .0401 
25         369.500       .1045       .1217        1.14       61.6525       .0443 
5          383.300       .1328       .1319        1.15       60.6155       .0460 
3          430.500       .1610       .1711        1.21       57.2863       .0517 
17         456.000       .1893       .1951        1.24       55.6434       .0546 
24         464.500       .2175       .2036        1.26       55.1224       .0554 
23         472.500       .2458       .2117        1.27       54.6448       .0563 
20         481.300       .2740       .2209        1.28       54.1341       .0571 
8          500.000       .3023       .2411        1.32       53.1019       .0588 
4          512.900       .3305       .2556        1.34       52.4337       .0599 
2          521.380       .3588       .2654        1.36       52.0147       .0606 
29         531.500       .3870       .2773        1.38       51.5363       .0614 
7          573.800       .4153       .3298        1.49       49.8067       .0641 
10         623.500       .4435       .3960        1.66       48.3757       .0663 
30         665.500       .4718       .4544        1.83       47.7129       .0672 
31         681.000       .5000       .4763        1.91       47.5996       .0674 
27         686.000       .5282       .4834        1.94       47.5784       .0674 
1          719.100       .5565       .5303        2.13       47.6261       .0673 
34         763.500       .5847       .5924        2.45       48.2011       .0665 
33         773.000       .6130       .6055        2.53       48.3988       .0662 
22         788.000       .6412       .6258        2.67       48.7632       .0657 
19         799.000       .6695       .6406        2.78       49.0705       .0652 
15         833.800       .6977       .6857        3.18       50.2575       .0634 
21         892.000       .7260       .7551        4.08       52.9196       .0591 
6          900.200       .7542       .7641        4.24       53.3571       .0584 
26         904.000       .7825       .7683        4.32       53.5647       .0581 
28         911.500       .8107       .7763        4.47       53.9833       .0574 
16         912.000       .8390       .7768        4.48       54.0117       .0573 
12        1081.300       .8672       .9136       11.58       66.0629       .0370 
32        1089.500       .8955       .9181       12.21       66.7472       .0359 
14        1210.300       .9237       .9658       29.20       77.5678       .0209 
9         1248.000       .9520       .9748       39.61       81.1752       .0170 
35        1354.000       .9802       .9902      101.67       91.7435       .0086 

 

Results of Binomial goodness of fit test 
variate dn = max(|Fobs-Fest|)/sd =     1.4494 at Fest= .2773 
prob. of exceedance P(DN>dn)     =      .1472 
number of observations           =    35 
 
Results of Kolmogorov-Smirnov test 
variate dn = max(|Fobs-Fest|)   =      .1227 
prob. of exceedance P(DN>dn)    =      .6681 
 
Results of Chi-Square test 
variate = chi-square           =     5.2000 
prob. of exceedance of variate =      .2674 
number of classes              =     7 
number of observations         =    35 
degrees of freedom             =     4 
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Values for distinct return periods 
 
Return per. prob(xi<x) p  value x     st. dev. x confidence    intervals 
                                                   lower         upper  
 
2            .50000       697.725      47.558     604.493       790.957 
5            .80000       934.474      55.340     825.987      1042.961 
10           .90000      1058.347      64.184     932.521      1184.173 
25           .96000      1190.401      75.692    1042.014      1338.788 
50           .98000      1275.684      83.867    1111.271      1440.096 
100          .99000      1352.380      91.565    1172.876      1531.885 
250          .99600      1444.011     101.085    1245.846      1642.177 
500          .99800      1507.611     107.852    1296.180      1719.043 

Table 4.2:  Analysis results for the normal distribution fitting for annual rainfall at  
MEGHARAJ 

4.6 FREQUENCY AND DURATION CURVES 

A convenient way to show the variation of hydrological quantities through the year, by means of 
frequency curves, where each frequency curve indicates the magnitude of the quantity for a specific 
probability of non-exceedance. The duration curves are ranked representation of these frequency 
curves. The average duration curve gives the average number of occasions a given value was not 
exceeded in the years considered. The computation of frequency and duration curves is as given 
below: 

4.6.1 FREQUENCY CURVES 

Considering “n” elements of rainfall values in each year (or month or day) and that the analysis is 
carried out for “m” years (or months or days) a matrix of data Xij {for i=1,m and j=1,n} is obtained. For 
each j = j0  the data XI,jo, {for i=1,m} is arranged in ascending order of magnitude.  The probability that 
the ith element of this ranked sequence of elements is not exceeded is: 

                       (4.2) m
F

1
i

i +
=

 

The frequency curve connects all values of the quantity for j=1,n with the common property of equal 
probability of non-exceedance. Generally, a group of curves is considered which represents specific 
points of the cumulative frequency distribution for each j. Considering that curves are derived for 
various frequencies Fk {k=1,nf}, then values for rainfall Rk,j is obtained by linear interpolation between 
the probability values immediately greater (FI) and lesser (Fi-1) to nk for each j as: 

 R
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4.6.2 DURATION CURVES 

When the data Rk,j , k=1,nf  and j=1,n is ranked for each k, the ranked matrix represents the duration 
curves for given probabilities of non-exceedance.  

When all the data is considered without discriminating for different elements j {j=1,n} and are ranked 
in the ascending order of magnitude, then the resulting sequence shows the average duration curve. 
This indicates how often a given level of quantity considered will not be exceeded in a year (or month 
or day). 
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Example 4.3 

A long-term monthly rainfall data series of MEGHARAJ station (KHEDA catchment) is considered for 
deriving frequency curves and duration curves. Analysis is done on the yearly basis and the various 
frequency levels set are 10, 25, 50, 75 and 90 %.  

Figure 4.5 shows the frequency curves for various values (10, 25, 50, 75 and 90%) for each month in the 
year. Monthly rainfall distribution in the year 1982 is also shown superimposed on this plot for comparison. 
Minimum and maximum values for each month of the year in the plot gives the range of variation of rainfall 
in each month. Results of this frequency curve analysis is tabulated in Table 4.3. 

Figure 4.6 shows the plot of duration curves for the same frequencies. The plot gives values of monthly 
rainfall which will not be exceeded for certain number of months in a year with the specific level of 
probability. The results of analysis for these duration curve is given in Table 4.4. 

The average duration curve, showing value of rainfall which will not be exceeded “on an average” in a year 
for a certain number of months is given as Figure 4.7. 

 

Frequency Curves for Monthly Rainfall at MEGHARAJ
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Figure 4.5: Monthly frequency curves for rainfall at MEGHRAJ station 
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Average Duration Curve for Monthly Rainfall (MEGHARJ)
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Figure 4.6: Monthly duration curves for rainfall at MEGHARAJ station  

Duration Curves for Monthly Rainfall at MEGHARAJ
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Figure 4.7: Average monthly duration curves for rainfall at MEGHARAJ station  
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Frequency Element No. of Data

0.01 0.25 0.05 0.75 0.09

Year 1982 Min. Max. 

1 29 0 0 0 0 0 0 0 6 
2 29 0 0 0 0 0 0 0 20 
3 29 0 0 0 0 0 0 0 7 
4 29 0 0 0 0 0 0 0 0 
5 29 0 0 0 0 0 0 0 30 
6 33 2 22 57 101.54 184.8 45 0 397 
7 36 77.01 198 266 394.75 448.93 211 15.05 613.05 
8 36 73.64 122.77 190.75 368.87 488.92 135.3 15.03 543 
9 36 0 6.63 52.5 154 320.09 0 0 355.09 

10 30 0 0 0 1.37 21.05 0 0 140 
11 29 0 0 0 0 0.08 90 0 124 
12 29 0 0 0 0 0 0 0 80 

Table 4.3: Results of analysis for frequency curves for monthly data for 
MEGHARAJ station (rainfall values in mm) 

Frequency No. of 
Elements 0.1 0.25 0.5 0.75 0.9 

Year 1982 Min. Max. 

1 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 6 
3 0 0 0 0 0 0 0 7 
4 0 0 0 0 0 0 0 20 
5 0 0 0 0 0 0 0 30 
6 0 0 0 0 0 0 0 80 
7 0 0 0 0 0.8 0 0 124 
8 0 0 0 1.37 21.05 0 0 140 
9 0 6.63 52.05 101.54 184.08 45 0 355.09 

10 2 22 57 154 320.09 90 0 397 
11 73.64 122.77 190.75 368.87 448.93 135.3 15.03 543 
12 77.01 198 266 394.75 488.92 211 15.05 613.5 

Table 4.4:  Results of analysis for duration curves for monthly data for 
MEGHARAJ station (rainfall values in mm) 

Rainfall Value 0 20.45 40.9 61.35 81.08 102.25 1 
No. of Exceedances 7.25 7.89 8.34 8.63 8.98 9.43 
Rainfall Value 122.07 143.15 163.6 184.05 204.05 224.95 2 

No. of Exceedances 9.59 9.72 10.04 10.02 10.03 10.59 

Rainfall Value 245.04 265.85 286.03 306.75 327.023 

No. of Exceedances 10.65 10.75 10.88 11.01 11.17 11.29 

Rainfall Value 368.01 388.55 409 429.45 449.09 470.35 4 

No. of Exceedances 11.36 11.45 11.58 11.58 11.71 11.78 

Rainfall Value 490.08 511.25 531.07 552.15 572.06 593.05 613.05 5 

No. of Exceedances 11.84 11.87 11.87 11.97 11.97 11.97 12 

347.65 

Table 4.5:  Results of analysis for average duration curves for monthly data for 
MEGHARAJ station (rainfall values in mm) 

4.7 INTENSITY-FREQUENCY-DURATION ANALYSIS 

If rainfall data from a recording raingauge is available for long periods such as 25 years or more, the 
frequency of occurrence of a given intensity can also be determined. Then we obtain the intensity-
frequency-duration relationships. Such relationships may be established for different parts of the year, 
e.g. a month, a season or the full year. The procedure to obtain such relationships for the year is 
described in this section. The method for parts of the year is similar.  

The entire rainfall record in a year is analysed to find the maximum intensities for various durations. 
Thus each storm gives one value of maximum intensity for a given duration. The largest of all such 
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values is taken to be the maximum intensity in that year for that duration. Likewise the annual 
maximum intensity is obtained for different duration. Similar analysis yields the annual maximum 
intensities for various durations in different years. It will then be observed that the annual maximum 
intensity for any given duration is not the same every year but it varies from year to year. In other 
words it behaves as a random variable. So, if 25 years of record is available then there will be 25 
values of the maximum intensity of any given duration, which constitute a sample of the random 
variable. These 25 values of any one duration can be subjected to a frequency analysis. Often the 
observed frequency distribution is well fitted by a Gumbel distribution. A fit to a theoretical distribution 
function like the Gumbel distribution is required if maximum intensities at return periods larger than 
can be obtained from the observed distribution are at stake. Similar frequency analysis is carried out 
for other durations. Then from the results of this analysis graphs of maximum rainfall intensity against 
the return period for various durations such as those shown in Figure 4.8 can be developed.  
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Figure 4.8: 
Intensity-frequency-duration 
curves 

 

 

 

By reading for each duration at distinct return periods the intensities intensity-duration curves can be 
made. For this the rainfall intensities for various durations at concurrent return periods are connected 
as shown in Figure 4.9.  
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Figure 4.9:  
Intensity-frequency-duration 
curves for various return 
periods 
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From the curves of Figure 4.9 the maximum intensity of rainfall for any duration and for any return 
period can be read out. 

Alternatively, for any given return period an equation of the form. 

                       (4.4) I b)aD(
c
+

=

can be fitted between the maximum intensity and duration 

where  I = intensity of rainfall (mm/hr) 

D = duration (hrs) 

c, a, b are coefficients to be determined through regression analysis. 

One can write for return periods T1, T2, etc.: 

                       (4.5) I etc;
)aD(

cI;
)aD(

c
21 b

2

2
b

1

1

+
=

+
=

where c1, a1 and b1 refer to return period T1and c2, a2 and b2 are applicable for return period T2, etc. 
Generally, it will be observed that the coefficients a and b are approximately the same for all the 
return periods and only c is different for different return periods. In such a case one general equation 
may be developed for all the return periods as given by:  

                       (4.6) 
b

d

)aD(
KTI
+

=

where T is the return period in years and K and d are the regression coefficients for a given location. If 
a and b are not same for all the return periods, then an individual equation for each return period may 
be used. In Figure 4.8 and 4.9 the results are given for Bhopal, as adapted from Subramanya, 1994. 
For Bhopal with I in mm/hr and D in hours the following parameter values in equation 4.6 hold: 

K = 69.3;   a = 0.50;   b = 0.878   and   d = 0.189    

When the intensity-frequency-duration analysis is carried out for a number of locations in a region, the 
relationships may be given in the form of equation 4.6 with a different set of regression coefficients for 
each location. Alternatively, they may be presented in the form of maps (with each map depicting 
maximum rainfall depths for different combinations of one return period and one duration) which can 
be more conveniently used especially when one is dealing with large areas. Such maps are called 
isopluvial maps. A map showing maximum rainfall depths for the duration of one hour which can be 
expected with a frequency of once in 50 years over South India is given in Figure 4.10. 

 

 

Figure 4.10: 
Isopluvial map of 50 years 1 hour 
rainfall over South India 
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Annual maximum and annual exceedance series 

In the procedure presented above annual maximum series of rainfall intensities were considered. For 
frequency analysis a distinction is to be made between annual maximum and annual exceedance 
series. The latter is derived from a partial duration series, which is defined as a series of data above a 
threshold. The maximum values between each upcrossing and the next downcrossing (see Figure 
4.11) are considered in a partial duration series. The threshold should be taken high enough to make 
successive maximums serially independent or a time horizon is to be considered around the local 
maximum to eliminate lower maximums exceeding the threshold but which are within the time horizon. 
If the threshold is taken such that the number of values in the partial duration series becomes equal to 
the number of years selected then the partial duration series is called annual exceedance series. 

Since annual maximum series consider only the maximum value each year, it may happen that the 
annual maximum in a year is less than the second or even third largest independent maximum in 
another year. Hence, the values at the lower end of the annual exceedance series will be higher than 
those of the annual maximum series. Consequently, the return period derived for a particular I(D) 
based on annual maximum series will be larger than one would have obtained from annual 
exceedances. The following relation exists between the return period based on annual maximum and 
annual exceedance series (Annexure II. Equation (4.158)): 

                       (4.7) 







−

=

1T
Tln

1TE

where:  TE = return period for annual exceedance series 

 T   = return period for annual maximum series 
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Figure 4.11: 
Definition of partial 
duration series 

 

 

 

 

 

 

The ratio TE/T is shown in Figure 4.12. It is observed that the ratio approaches 1 for large T. 
Generally, when T < 20 years T has to be adjusted to TE for design purposes. Particularly for urban 
drainage design, where low return periods are used, this correction is of importance. 
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Figure 4.12:  
Relation between 
return periods annual 
maximum (T) and 
annual exceedance 
series (TE). 

 

 

In HYMOS annual maximum series are used in the development of intensity-duration-frequency 
curves, which are fitted by a Gumbel distribution. Equation (4.7) is used to transform T into TE for T < 
20 years. Results can either be presented for distinct values of T or of TE. 

Example 4.4 

Analysis of hourly rainfall data of station Chaskman, period 1977-2000, monsoon season 1/6-30/9. First, 
from the hourly series the maximum seasonal rainfall intensities for each year are computed for rainfall 
durations of 1, 2, …, 48 hrs. In this way annual maximum rainfall intensity series are obtained for different 
rainfall durations. Next, each such series is subjected to frequency analysis using the Gumbel or EV1 
distribution, as shown for single series in Figure 4.13. The IDF option in HYMOS automatically carries out 
this frequency analysis for all rainfall durations. The results are presented in Table 4.6. The fit to the 
distribution for different rainfall durations is shown in Figure 4.14. It is observed that in general the Gumbel 
distribution provides an acceptable fit to the observed frequency distribution.    

Fit of Gumbel Distribution to hourly rainfall extremes

Gumbel Distribution        B = 9.95   X0 = 20.37   95% Confidence Interval

regression Line reduced variate observed frequencies lower confidence limit data
upper confidence limit data

Frequencies
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Figure 4.13: Fitting of Gumbel distribution to observed frequency distribution of  
  hourly annual maximum series for monsoon season 
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Intensity - Duration - Frequency Relations 
Input Timestep: 1 hour 
Duration computation in: hour 
Year: 1998 contains missing values, analysis may not be correct 
Year: 1999 contains missing values, analysis may not be correct 
Year: 2000 contains missing values, analysis may not be correct 
 
Period from '01-06' to '01-10' 
Start year: 1977 
End year  : 2000 
 
Maximum Intensities per year for selected durations 

 
                             Durations (hour) 
Year   1   2  3  4  6  9  12  18  24 48 
 
1977 14.40 9.70 7.60 6.55 4.37 2.91 2.18 1.68 1.56 1.03  
1978 19.00 14.45 10.03 7.65 5.12 3.41 2.56 1.71 1.66 1.27  
1979 23.30 19.40 14.50 10.95 7.30 5.00 3.78 2.81 2.37 1.86  
. 
1997 37.00 29.25 27.50 25.50 23.08 18.06 15.71 11.97 9.25 5.41  
1998 22.40 15.00 10.00 8.88 6.17 4.46 3.50 2.56 2.38 1.47  
1999 30.00 22.60 16.17 12.38 8.30 5.53 4.15 2.77 2.07 1.08  
2000 24.00 12.30 8.53 6.70 4.62 4.38 3.28 2.19 2.29 1.48  
 
Parameters of Gumbel distribution 
 
Duration   X0    BETA   Sd1    Sd2 
 
1  20.372   9.955  2.140  1.584 
2  13.623   7.250  1.558  1.154 
3  10.322   5.745  1.235  0.914 
4  8.316   4.703  1.011  0.748 
6  6.308   3.567  0.767  0.568 
9  4.634   2.673  0.574  0.425 
12  3.605   2.166  0.465  0.345 
18  2.541   1.520  0.327  0.242 
24  2.192   1.211  0.260  0.193 
48  1.329   0.701  0.151  0.112 
 
              IDF-data: Annual Maximum 
 
Duration    Return Periods 
    1    2   4  10    25   50     100 
 
1  11.666 24.020  32.774  42.773   52.212  59.214  66.164  
2  7.282 16.280  22.656  29.938  36.813  41.912  46.975  
3  5.297 12.428  17.480  23.251  28.698  32.740  36.751  
4  4.203 10.040  14.175  18.899  23.358  26.666  29.949  
6  3.188  7.615  10.752  14.334  17.716  20.225  22.716  
9  2.296  5.614   7.964  10.648  13.183  15.063  16.929  
12  1.711  4.399   6.303   8.479  10.532  12.056  13.568  
18  1.212  3.098   4.435   5.961   7.403   8.472   9.533  
24  1.133  2.636   3.700   4.916   6.064   6.916   7.761  
48  0.716  1.586   2.202   2.906   3.571   4.064   4.553  

Table 4.6:  Example of output file of IDF option 

Note that in the output table first a warning is given about series being incomplete for some years. This 
may affect the annual maximum series. Comparison with nearby stations will then be required to see 
whether extremes may have been missed. If so, the years with significant missing data are eliminated from 
the analysis. 

Next, the table presents an overview of the annual maximum series, followed by a summary of the Gumbel 
distribution parameters x0 and β, with their standard deviations (sd1, sd2) and for various rainfall durations 
the rainfall intensities for selected return periods. The latter values should be compared with the maximum 
values in the annual maximum series. 
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Note that Figure 4.14 gives a row-wise presentation of the last table, whereas Figure 4.15 gives a column-
wise presentation of the same table. This figure is often presented on log-log scale, see Figure 4.16.      

Intensity Frequency Curves
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Figure 4.14: Intensity Frequency curves for different rainfall durations, with fit to  
  Gumbel distribution 

Intensity-Duration-Frequency Curves
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Figure 4.15: Intensity-Density-Frequency curves for Chaskman on linear scale  
  (Annual maximum data) 
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Intensity-Duration-Frequency Curves
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Figure 4.16: Intensity-Density-Frequency curves for Chaskman on double-log  
scale (Annual maximum data) 

The IDF-option in HYMOS also includes a procedure to convert the annual maximum statistics into annual 
exceedance results by adapting the return period according to equation (4.7). Hence, rather than using the 
annual exceedance series in a frequency analysis the annual maximum series’ result is adapted. This 
procedure is useful for design of structures where design conditions are based on events with a moderate 
return period (5 to 20 years). An example output is shown in Table 4.7 and Figures 4.16 and 4.17. 
Compare results with Table 4.6 and Figures 4.14 and 4.15. 

IDF  - data : Annual Exceedences 
 
 Te Tm 
 1 1.581977 
 2 2.541494 
 4 4.520812 
 10 10.50833 
 25 25.50333 
 50 50.50167 
 100 100.5008 
 
Duration           Return Periods 
     1     2       4  10   25     50      100 
 
 1  20.372  27.272  34.172  43.293  52.414  59.314  66.214  
 2  13.623  18.648  23.674  30.317  36.960  41.986  47.011  
 3  10.322  14.304  18.286  23.551  28.815  32.797  36.780  
 4   8.316  11.576  14.836  19.145  23.454  26.713  29.973  
 6   6.308   8.780  11.252  14.521  17.789  20.261  22.733  
 9   4.634   6.487   8.339  10.788  13.237  15.089  16.942  
 12   3.605   5.106   6.607   8.592  10.576  12.078  13.579  
 18   2.541   3.595   4.648   6.041   7.433   8.487   9.540  
 24   2.192   3.031   3.870   4.980   6.089   6.928   7.767  
 48   1.329   1.815   2.301   2.943   3.585   4.071   4.557  

 

Table 4.7: Example of output of IDF curves for annual exceedances.  
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Intensity-Duration-Frequency Curves (Ann. Exceedances)
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Figure 4.17:  Intensity-Density-Frequency curves for Chaskman on linear scale  
  (Annual exceedances) 

Finally, the Rainfall Intensity-Duration curves for various return periods have been fitted by a function of the 
type (4.4). It appeared that the optimal values for “a” and “b” varied little for different return periods. Hence 
a function of the type (4.6) was tried. Given a value for “a” the coefficients K, d and b can be estimated by 
multiple regression on the logarithmic transformation of equation (4.6): 

               (4.12) )aDlog(bTlogdKlogIlog +−+=

By repeating the regression analysis for different values of “a” the coefficient of determination was 
maximised. The following equation gave a best fit (to the logaritms): 

993.0R
)65.0D(

T8.32I 2
81.0

27.0
=

+
=

Though the coefficient of determination is high, a check afterwards is always to be performed before using 
such a relationship!! A comparison is shown in Figure 4.19. A reasonable fit is observed. 

Intensity-Duration-Frequency Curves (Ann. Exceedances)

Return Periods
1 Year 2 Year 4 Year 10 Year 25 Year 50 Year 100 Year

Duration (hrs)
45403530252015105

Ra
in

fa
ll 

in
te

ns
ity

 (m
m

/h
r)

70656055504540
35
30
25
20

15

10

5

Figure 4.18:  Intensity-Density-Frequency curves for Chaskman on double-log  
  scale (Annual exceedances) 
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Station Chaskman (monsoon 1977-2000)
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Figure 4.19:  Test of goodness of fit of IDF-formula to IDF-curves from  
 Figure 4.17 and 4.18 

 

4.8 DEPTH-AREA-DURATION ANALYSIS 

In most of the design applications the maximum depth of rainfall that is likely to occur over a given 
area for a given duration is required. Wherever possible, the frequency of that rainfall should also be 
known. For example, the knowledge of maximum depth of rainfall occurring on areas of various sizes 
for storms of different duration is of interest in many hydrological design problems such as the design 
of bridges and culverts, design of irrigation structures etc. 

A storm of given duration over a certain area rarely produces uniform rainfall depth over the entire 
area. The storm usually has a centre, where the rainfall Po is maximum which is always larger than 
the average depth of rainfall P for the area as a whole. Generally, the difference between these two 
values, that is   (Po – P), increases with increase in area and decreases with increase in the duration. 
Also the difference is more for convective and orographic precipitation than for cyclonic. To develop 
quantitative relationship between Po and P, a number of storms with data obtained from recording 
raingauges have to be analysed. The analysis of a typical storm is described below (taken from 
Reddy, 1996). 

The rainfall data is plotted on the basin map and the isohyets are drawn. These isohyets divide the 
area into various zones. On the same map the Thiessen polygons are also constructed for all the 
raingauge stations. The polygon of a raingauge station may lie in different zones. Thus each zone will 
be influenced by a certain number of gauges, whose polygonal areas lie either fully or partially in that 
zone. The gauges, which influence each zone along with their influencing areas, are noted. Next for 
each zone the cumulative average depth of rainfall (areal average) is computed at various time using 
the data of rainfall mass curve at the gauges influencing the zone and the Thiessen weighted mean 
method. In other words in this step the cumulative depths of rainfall at different times recorded at 
different parts are converted into cumulative depths of rainfall for the zonal area at the corresponding 
times. Then the mass curves of average depth of rainfall for accumulated areas are computed starting 
from the zone nearest to the storm centre and by adding one more adjacent to it each time, using the 
results obtained in the previous step and using the Thiessen weight in proportion to the areas of the 
zones. These mass curves are now examined to find the maximum average depth of rainfall for 
different duration and for progressively increasing accumulated areas. The results are then plotted on 
semi-logarithmic paper. That is, for each duration the maximum average depth of rainfall on an 
ordinary scale is plotted against the area on logarithmic scale. If a storm contains more than one 
storm centre, the above analysis is carried out for each storm centre. An enveloping curve is drawn 
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for each duration. Alternatively, for each duration a depth area relation of the form as proposed by 
Horton may be established: 

                       (8.1) P
nkA

o eP −=

where:  Po   = highest amount of rainfall at the centre of the storm (A = 25 km2) for any given duration  

P    = maximum average depth of rainfall over an area A (> 25 km2) for the same duration 

A    = area considered for P  

k, n  = regression coefficients, which vary with storm duration and region. 
 

Example 4.5 

The following numerical example illustrates the method described above. In and around a catchment with 
an area of 2790 km2 some 7 raingauges are located, see Figure 4.20. The record of a severe storm 
measured in the catchment as observed at the 7 raingauge stations is presented in Table 4.8 below: 

Cumulative rainfall in mm measured at raingauge stations Time in 
hours A B C D E F G 

4 0 0 0 0 0 0 0 

6 12 0 0 0 0 0 0 

8 18 15 0 0 0 6 0 

10 27 24 0 0 9 15 6 

12 36 36 18 6 24 24 9 

14 42 45 36 18 36 33 15 

16 51 51 51 36 45 36 18 

18 51 63 66 51 60 39 18 

20 51 72 87 66 66 42 18 

22 51 72 96 81 66 42 18 

24 51 72 96 81 66 42 18 

Table 4.8: Cumulative rainfall record measured for a severe storm at 7 raingauges  
  (A to G) 

The total rainfall of 51, 72, 96, 81, 66, 42 and 18 mm are indicated at the respective raingauge stations A, 
B, C, D, E, F and G on the map. The isohyets for the values 30, 45, 60 and 75 mm are constructed. Those 
isohyets divide the basin area into five zones with areas as given in Table 4.9. The Thiessen polygons are 
then constructed for the given raingauge network [A to G] on the same map. The areas enclosed by each 
polygon and the zonal boundaries for each raingauge is also shown in Table 4.9. 

Zone Area Raingauge station area of influence in each zone (km2) 

 km2 A B C D E F G 

I 415 0 105 57 253 0 0 0 

II 640 37 283 0 20 300 0 0 

III 1015 640 20 0 0 185 170 0 

IV 525 202 0 0 0 0 275 48 

V 195 0 0 0 0 0 37 158 

Table.4.9: Zonal areas and influencing area by rain gauges 

As can be seen from Figure 4.20 Zone I (affected by the rainfall stations with the highest point rainfall 
amounts) is the nearest to storm centre while Zone V is the farthest. 
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Figure 4.20: 
Depth-area-duration analysis 

 

 

 

 
 

 

 

 

The cumulative average depth of rainfall for each zone is then computed using the data at Raingauge 
stations A, B, C, D, E, F and G and the corresponding Thiessen weights. For example, the average depth 
of rainfall in Zone I at any time, PI is computed from the following equation. 

  P =
)25357105(

Px253Px57xPx105 DCB
I ++

+

 

where PB, PC and PD are the cumulative rainfalls at stations B, C and D at any given time. That is  

 PI = 0.253 PB + 0.137 PC + 0.610 PD 

Similarly for Zone II, we have: 

  37P =
)3002028337(

Px300Px20Px283xPx EDBA
II +++

++

or: 

 PII = 0.058 PA + 0.442 PB + 0.031 PD + 0.469 PE and so on.  

These results are shown in Table 4.11 and Figure 4.22. 

Time 
(hours) 

Zone I Zone II Zone III Zone IV Zone V 

4 0 0 0 0 0 
6 0 0.70 7.60 4.62 0 
8 3.80 7.67 12.66 10.07 1.14 

10 6.07 24.07 21.66 18.80 7.71 
12 15.23 29.44 31.81 27.26 11.85 
14 27.30 39.77 39.47 34.83 18.42 
16 41.85 46.31 46.86 40.14 21.42 
18 56.09 60.53 50.87 41.71 21.99 
20 70.40 64.78 52.65 43.28 22.56 
22 80.78 68.25 52.65 43.28 22.56 
24 80.78 68.25 52.65 43.28 22.56 

Table 4.11:  Cumulative average depths of rainfall in various zones in mm. 
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 Figure 4.22: Cumulative average depths of rainfall in Zones I to V 

In the next step the cumulative average rainfalls for the progressively accumulated areas are worked out. 
Here the weights are used in proportion to the areas of the zones. For example, the cumulative average 
rainfall over the first three zones is given as 

1015640415
Px1015Px640Px415P IIIIII

IIIIII ++
++

=++ 

     = 0.2 PI + 0.31 PII + 0.49 PIII 

The result of this step are given in Table 4.11 and Figure 4.22. 

Time hours I 

415 km2 

I + II 

1055 km2 

I + II + III 

2070 km2 

I + II + III + IV 

2595 km2 

I + II + III+ IV + V 

2790 km2 

4 0 0 0 0 0 

6 0 0.43 3.94 4.08 3.79 

8 3.80 6.15 9.34 9.49 8.91 

10 6.07 17.00 19.28 19.18 18.38 

12 15.23 23.86 27.76 27.66 26.55 

14 27.30 34.87 37.12 36.66 35.38 

16 41.85 44.56 45.69 44.57 42.95 

18 56.09 58.79 54.91 52.24 50.12 

20 70.40 66.99 59.96 56.59 54.21 

22 80.78 73.17 63.12 59.11 56.55 

24 80.78 73.17 63.12 59.11 56.55 

Table 4.11: Cumulative average rainfalls for accumulated areas in mm 
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Figure 4.22: Cumulative average depths of rainfall in cumulated areas Zones  

I to I+II+III+IV+V 

Now for any zone the maximum average depth of rainfall for various durations of 4, 8, 12, 16 and 20 h can 
be obtained from Table 4.10 by sliding a window of width equal to the required duration over the table 
columns with steps of 2 hours. The maximum value contained in the window of a particular width is 
presented in Table 4.12. 

 
Maximum average depths of rainfall in mm Duration in 

hours 415 km2 1055 km2 2070 km2 2595 km2 2790 km2 
4 28.79 23.92 18.42 18.17 17.64 
8 55.17 43.13 36.35 35.08 34.04 

12 74.71 60.84 50.97 48.16 46.33 
16 80.78 72.74 59.18 56.59 54.21 
20 80.78 73.17 63.12 59.11 56.55 

Table 4.12: Maximum average depths of rainfall for accumulated areas 

For each duration, the maximum depths of rainfall is plotted against the area on logarithmic scale as shown 
in Figure 4.23.  
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Figure 4.23:  Depth-area-duration curves for a particular storm 
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By repeating this procedure for other severe storms and retrieving from graphs like Figure 4.23 for distinct 
areas the maximum rainfall depths per duration, a series of storm rainfall depths per duration and per area 
is obtained. The maximum value for each series is retained to constitute curves similar to Figure 4.23. 
Consequently, the maximum rainfall depth for a particular duration as a function of area may now be made 
of contributions of different storms to produce the overall maximum observed rainfall depth for a particular 
duration as a function of area to constitute the depth-area-duration (DAD) curve. For the catchment 
considered in the example these DAD curves will partly or entirely exceed the curves in Figure 4.23 unless 
the presented storm was depth-area wise the most extreme one ever recorded.  

 

Areal reduction factor 

If the maximum average rainfall depth as a function of area is divided by the maximum point rainfall 
depth the ratio is called the Areal Reduction Factor (ARF), which is used to convert point rainfall 
extremes into areal estimates. ARF-functions are developed for various storm durations. In practice, 
ARF functions are established based on average DAD’s developed for some selected severe 
representative storms.  

These ARF’s which will vary from region to region, are also dependent on the season if storms of a 
particular predominate in a season. Though generally ignored, it would be of interest to investigate 
whether these ARF’s are also dependent on the return period as well. To investigate this a frequency 
analysis would be required to be applied to annual maximum depth-durations for different values of 
area and subsequently comparing the curves valid for a particular duration with different return 
periods.  

In a series of Flood Estimation Reports prepared by CWC and IMD areal reduction curves for rainfall 
durations of 1 to 24 hrs have been established for various zones in India (see e.g. CWC, Hydrology 
Division, 1994). An example is presented in Figure 4.24 (zone 1(g)). 
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Figure 4.24: Example of areal reduction factors for different rainfall durations 

Time distribution of storms 

For design purposes once the point rainfall extreme has been converted to an areal extreme with a 
certain return period, the next step is to prepare the time distribution of the storm. The time distribution 
is required to provide input to hydrologic/hydraulic modelling. The required distribution can be derived 
from cumulative storm distributions of selected representative storms by properly normalising the 
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horizontal and vertical scales to percentage duration and percentage cumulative rainfall compared to 
the total storm duration and rainfall amount respectively. An example for two storm durations is given 
in Figure 4.25, valid for the Lower Godavari sub-zone – 3 (f). From Figure 4.25 it is observed that the 
highest intensities are occurring in the first part of the storm (about 50% within 15% of the total storm 
duration). Though this type of storm may be characteristic for the coastal zone further inland different 
patterns may be determining. A problem with high intensities in the beginning of the design storm is 
that it may not lead to most critical situations as the highest rainfall abstractions in a basin will be at 
the beginning of the storm. Therefore one should carefully select representative storms for a civil 
engineering design and keep in mind the objective of the design study. There may not be one design 
storm distribution but rather a variety, each suited for a particular use. 
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Figure 4.25:   
Time distributions of storms in 
Lower Godavari area for 2-3 and 
19-24 storm durations 

 

 

 

5 ANALYSIS OF CLIMATIC DATA  

5.1 GENERAL 

Evaporation is the process by which water is lost to the atmosphere in the form of vapour from large 
open free water bodies like ponds, rivers, lakes and reservoirs. 

Transpiration is the process by which water leaves the body of a living plant and reaches the 
atmosphere as water vapour. The water present as soil moisture in the root zone is extracted by the 
vegetation through its roots and is passed through the stem and branches and is eventually lost as 
transpiration from the leaves. For hydrological purposes, evaporation and transpiration processes are 
commonly considered together as evapotranspiration 

Potential evapotranspiration (PE) is usually defined as the water loss which will occur from a surface 
fully covered by green vegetation if at no time there is a deficiency of water in the soil for the use of 
vegetation. It is primarily dependent on climatic conditions. 

Actual evapotranspiration (AE) is the real evapotranspiration at a location dependent on the available 
moisture in the soil which is in turn dependent on soil characteristics. It may be calculated from PE for 
the specific conditions at the site. 

Evaporation from a free water surface and potential evapotranspiration are the principal variables of 
interest in hydrology. Evaporation estimates may be based on measurement of losses from an 
evaporation pan or on theoretical and empirical methods based on climatological measurements. 
Practical estimation of potential evapotranspiration depends on estimation from climatological data. 
Several researchers have developed empirical formulae for estimation of evaporation and 
evapotranspiration from climatic data. These formulae range from simple regression type equations to 
more detailed methods such as those representing water budget, energy budget and mass transfer 
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approaches; the principal methods in use are based on the Penman equation and methodology as 
discussed in full. 

Climatic data (with the exception of measured pan evapotranspiration) are thus not themselves of 
interest in hydrology but they are required for the estimation of evaporation from open water and 
evapotranspiration. 

5.2 ANALYSIS OF PAN EVAPORATION 

5.2.1 PANS FOR ESTIMATING OPEN WATER EVAPORATION 

The standard Class A pan used in India, the method of measurement, typical errors and error 
detection have been described in Operational Manual Part I, Volume 8.  Evaporation measured by 
pans does not represent the evaporation from large water bodies such as lakes and reservoirs. Pans 
have the following limitations: 

Pans differ from lakes and reservoirs in the heat storage characteristics and heat transfer. Pans 
exposed above ground are subject to heat exchange through the sides     

• 

• 
• 

The height of rim in an evaporation pan affects the wind action over the surface.    
The heat transfer characteristics of the pan material is different from that of the reservoir 

Since heat storage in pans is small, pan evaporation is nearly in phase with climate, but in the case of 
very large and deep lakes the time lag in lake evaporation may be up to several months. Estimates of 
annual lake evaporation can be obtained by application of the appropriate lake – pan coefficient to 
observed pan evaporation.  

The lake – pan coefficient is given by El  / E p   where El  is the evaporation from the lake and E p  is the 
evaporation from the pan.     Pan - lake coefficients show considerable variation from place to place 
and from month to month for the same location (WMO Technical Note 126). The variation from month 
to month precludes the use of  a constant pan coefficient. 

Monthly pan coefficient depends on climate, and lake size and depth, and range will generally vary 
from 0.6 to 0.8.  For dry seasons and arid climates the pan water temperature is less than the air 
temperature and the coefficient may be 0.60 or less whilst for humid seasons and climates where the 
pan water temperature is higher than air temperature pan coefficients may be 0.80 or higher. The 
average value used is generally 0.7.  Based on the studies carried out in India, the average pan  - 
lake coefficient for the Indian Standard pan was found to be 0.8 ranging from 0.65 to 1.10.  
Ramasastri (1987) computed open water evaporation using pan – lake coefficients for whole of India 
based on the evaporation data of 104 US Class A pan evaporimeters. 

5.2.2 EFFECTS OF MESH SCREENING 

The top of the standard pan in use in India is covered fully with a hexagonal wire netting of galvanised 
iron to protect the water in the pan from birds. The screen has an effect to reduce pan evaporation by 
about 14 % as compared to that from an un-screened pan. Although a correction factor of 1.144 is 
commonly applied, it seems preferable, to retain the originally measured values in the archive, to 
indicate that this is the case in reports, and to leave mesh corrections to users. This is to allow for the 
possibility that future amendments may be made to the correction factor. 

5.2.3 PANS FOR ESTIMATING REFERENCE CROP EVAPOTRANSPIRATION 

Provision is made in HYMOS for the estimation of reference crop evapotranspiration from: 

                          (5.1) E panpt EK=
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where  
 KP   = pan coefficient (FAO (1977) publication No 24) 
 Epan = pan evaporation in mm / day 

The pan coefficient is a function of relative humidity, daily windrun and the fetch. The fetch depends 
on the dryness or wetness of the upwind land surface as illustrated in Fig. 5.1. There are two cases: 

for case 1 the fetch is the length of the upwind green crop from the pan • 

• for case 2 the fetch is the length of the upwind dry surface between the crop and the pan 

Case 1

Wind

Dry Surface Green crop

50 m or more Varies

Pan

Case 2

Wind

Dry SurfaceGreen Surface

50 m or more Varies

Pan

Figure 5.1: Definition sketch for computing pan coefficient 

5.2.4 PAN EVAPORATION REFERENCES 
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Venkataraman, S. and V. Krishnamurthy (1965) ‘Studies on the estimation of Pan evaporation from 
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World Meteorological Organisation (1966) ‘Measurement and estimation of evaporation and evapo-
transpiration’ WMO Technical Note No. 83 
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5.3 ESTIMATION OF POTENTIAL EVAPOTRANSPIRATION 

5.3.1 GENERAL 

The Penman method, in wide use for estimation of potential evapotranspiration arose from earlier 
studies of methods to estimate open water evaporation. In turn, both depend on the combination of 
two physical approaches which have been used in calculating evaporation from open water: 

the mass transfer method, sometimes called the vapour flux method, which calculates the upward 
flux of water vapour from the evaporating surface 

• 

• the energy budget method which considers the heat sources and sinks of the water body and air 
and isolates the energy required for the evaporating process 

The disadvantage of these methods is the requirement for data not normally measured at standard 
climatological stations. To overcome this difficulty Penman (1948) developed a formula for calculating 
open water evaporation, combining the physical principles of the mass transfer and energy budget 
methods with some empirical concepts incorporated, to enable standard meteorological observations 
to be used. The method was subsequently adapted to estimate potential evapotranspiration and to 
substitute alternative more commonly measured climatic variables for those less commonly 
measured. Reference is made to Volume 3 for a derivation of the Penman equation (Volume 3, 
Design Manual, Hydro-meteorology, Chapter 2). 

5.3.2 THE PENMAN METHOD 

The Penman formula may be presented in a number of formats but may be conveniently expressed 
as follows: 

                       (5.2) E ( ) ( )asn eeufR −
γ+∆

γ
+

γ+∆
∆

=

where:  
E =  reference crop evapotranspiration (mm/day) 
∆ =  slope of es - t curve at temperature t (kPa/oC) 
γ =  psychometric constant (kPa/oC) 
Rn =  net radiation (mm/day) 
f(u) =  wind related function 
es =  saturation vapour pressure at mean air temperature (kPa) 
ea =  actual vapour pressure (kPa) 
 

The vapour pressure-temperature gradient ∆ is computed from: 

                       (5.3) ∆
( )2

ss

T3.237
e4098

dT
de

+
==

where 

T =  t + 273.16 (K) 
t =  air temperature (oC) 

and  

                       (5.4) expe ( ) 







+

=
3.237T

T27.176108.0Ts
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The psychmetric constant γ  (kPa//°C) is computed from:  

                       (5.5) 
e ( ) ( )

λε
=

−

−
=γ

pc
TT

TeT p

w

aaws

where  
cp =  specific heat of air (=1.005 kJ hg-1 °C-1) 
p =  atmospheric pressure (kPa) 
ε =  ratio of molecular masses of water vapour and dry air = 0.622 
λ =  latent heat of vaporisation (kJkg-1) 

Where the air pressure is not measured, it is estimated as: 

                       (5.6) p

where  

256.5

T
H0065.0T3.101 







 −
=

H =  elevation relative to m.s.l (m) 

Where net radiation Rn is not available (as is normally the case in India), it can be substituted in turn 
by net shortwave and net longwave radiation, and then by bright sunshine totals which are more 
commonly measured at standard climatological stations. Thus net radiation can be computed from:  

                                   (5.7)  R nlnsn RR −=

where 

Rns =  net shortwave radiation 
Rnl =  net longwave radiation 
 

and in turn net shortwave radiation is:  

                       (5.8) R ( ) sns R1 α−=

where 

α =  albedo 
Rs =  shortwave radiation 

If the shortwave radiation is not available it is computed from: 

                       (5.9) R ( )NnbaR 11as +=

where 
Ra = extra terrestrial radiation (available from tables dependent on latitude and time of 

year) 
n/N = actual to maximum bright sunshine duration (from Campbell Stokes sunshine 

recorder) 
a1 , b1 = coefficients 
 

If the net longwave radiation is not available it is estimated from:  

                     (5.10) ( )ebTR −σ= ( )Nnbaa 33a22
4

nl +
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where 
σ =  Boltzmann constant (σ = 2.10-9) 
a2, b2 = coefficients in vapour term 
a3, b3 = coefficients in radiation term 

The wind function f(u), as proposed by FAO is given by: 

                     (5.11) ( ) ( )0f 100U126.u 24+=

where  

24U = 24 hour wind run (km/day) measured at 2m above ground level 

The actual vapour pressure is computed by one of the following three formulae depending on which 
time series is available. For current data the formula using wet and dry bulb temperature is used even 
if relative humidity and dew point have already been calculated by the observer; this is to avoid 
incorporating observer’s calculation errors. The other formulae may be required for historic data 
where wet and dry bulb temperatures are no longer available. 

                     (5.12) 100rhee = sa

                     (5.13) ( ) )tee = ( wbdbwbsa tt −γ−

                     (5.14) ( )ee = dewsa t

where: rh   =  relative humidity in % 
twb, tdb  =  wet and dry bulb temperature (oC) 
tdew  =  dew point temperature (oC) 

Daily potential evapotranspiration using the Penman formula may thus be computed using the 
following observations at standard Indian climatological stations: 

tmax , tmin to obtain tmean  as (tmax ,+ tmin)/2 in (oC) 

twb, tdb  to obtain actual  and saturated vapour pressures (ea , es) 

U24  to obtain the wind function f(u) 

n actual daily bright sunshine duration using Campbell Stokes sunshine recorder to 
compute net shortwave and net longwave radiation (Rns , Rnl ) 

For current data these series must be available for calculation of evapotranspiration to be carried out. 
Other constants and coefficients required by the method are held in HYMOS. 

5.4 OTHER POTENTIAL EVAPOTRANSPIRATION FORMULAE 

A large number of empirical and theoretical formulae have been proposed for the calculation of 
potential evapotranspiration and several of these are available in HYMOS. These will not form a part 
of routine processing but may be used for special applications. The following methods are available: 

Christiansen method • 
• 
• 
• 
• 
• 

FAO radiation method 
Makkink radiation method 
Jensen-Haise method 
Blaney-Criddle method 
Mass transfer method 
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The minimum requirements of observed variables to obtain estimates using the above methods is 
shown in Table 5.1. 

 Christiansen Radiation Makkink Jensen-Haise Blaney-
Criddle 

Mass Transfer 

Air pressure       

Temp. max.       

Temp. min.       

Temp. db.       

Temp. wb.       

Wind run       

Sunshine hrs       

Altitude       

Table 5.1:  Minimum series requirements to obtain PE estimates by various methods 

6 ANALYSIS OF WATER LEVEL DATA 

Water levels of rivers do basically not form a homogeneous set of data, suitable for statistical 
analysis. A water level in a river is the result of an upstream discharge and the hydraulic conditions of 
the downstream control, i.e. the hydraulic characteristics of the control channel and in case of 
backwater a downstream water level.  

For a river with a flood plain one will observe that a fixed increase of discharge at stages where the 
river flows inbank will produce a much larger increase in the water level than when the river flows 
overbank; in case of a very wide flood plain the levels will hardly rise in response of an increase of 
discharge, as depicted in Figure 6.1.  

Floodplain level

∆h1

∆h2

∆ h1> ∆ h2

∆Q1= ∆ Q2

∆Q1 ∆Q2 Q

h

River cross-section

Stage-discharge
relation

 

 

Figure 6.1: 
Response of river stage to fixed 
increase of discharge for inbank 
and overbank flow 

 

 

 

 

It implies that extrapolation of a frequency distribution of river stages is not justified as the hydraulic 
characteristics of the downstream control rather than statistics determine the behaviour of the tail of 
the frequency distribution. The correct procedure would then be to apply frequency analysis to the 
discharge. Subsequently, the appropriate stage-discharge relation for the river location is used to 
transform the frequency distribution of the discharge in one for the water level, as shown in Figure 6.2.  
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Figure 6.2: 
Procedure for derivation of design 
stages from frequency analysis on 
discharges 

 

 

 

 

Hence for estimation of the height of a water level at a very low exceedance probability or a large 
return period T, e.g. for designing the height of dikes to give protection against flooding, the design 
level is to be obtained via the discharge. Often the design discharge (either as a single value or as a 
hydrograph) is used as input to a mathematical hydraulic model to arrive at the design level along the 
river. For correct results, the model should properly represent the geometry of the river and flood plain 
and their hydraulic roughness.  

In the coastal area the derivation of a frequency distribution of water levels becomes more complex as 
besides the discharge from upstream also the tide at sea affects the water level. Then the joint 
occurrence of river discharge and tide at sea, possibly to be extended with wind setup has to be 
considered for making statistical interference on river stages. The application of a mathematical 
hydraulic model, run for a variety of combinations of inflow hydrographs and dowstream tidal levels, is 
in such cases is indispensable to arrive at the design stage. 

Frequency analysis of river stages is only justified when interpolation takes place and no 
extrapolations are being made and the downstream control of the river location has not changed 
in the course of time. Such analysis is useful e.g. for navigation purposes, where the number of 
days in a year that a certain water level is exceeded and hence a Least Available Depth can be 
guaranteed is of importance, or when intake levels have to be determined for water abstractions.     

7 ANALYIS OF DISCHARGE DATA  

7.1 GENERAL  

The purpose of hydrological data processing software is not primarily hydrological analysis. 
However, various kinds of analysis are required for data validation and further analysis may be 
required for data presentation and reporting. Only such analysis is considered in this module 

• 

• 

• 

• 

Analysis will be carried out at Divisional level or at State Data  Processing Centres. 

There is a shared need for methods of statistical and hydrological analysis with rainfall and other 
climatic variables. Many tests have therefore already been described and will be briefly 
summarised here with reference previous Modules. 

The types of analysis considered in this module are: 
− computation of basic statistics 
− empirical frequency distributions and cumulative frequency distributions (flow duration curves) 
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− fitting of theoretical frequency distributions 
− Time series analysis 
¾ moving averages 
¾ mass curves 
¾ residual mass curves 
¾ balances 

− regression/relation curves 
− double mass analysis 
− series homogeneity tests 
− rainfall runoff simulation 

 
Reference is made to Annex 1 for a review of statistics relevant for the analysis of run-off data. 
 

7.2 COMPUTATION OF BASIC STATISTICS 

Basic statistics are widely required for validation and reporting. The following are commonly used: 

arithmetic mean • 

• 

• 

• 
• 
• 
• 
• 
• 
• 

                       (7.1) ∑X =
=

N

1i
iX

N
1

• median - the median value of  a ranked series Xi 

• mode - the value of X which occurs with greatest frequency or the middle value of the class with 
greatest frequency 

• standard deviation - the root mean squared deviation Sx :  

 

                       (7.2)  1N
)XX(

S
2

i
x −

∑ −
=

skewness or the extent to which the data deviate from a symmetrical distribution 
 

                       (7.3) 
∑
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7.3 EMPIRICAL FREQUENCY DISTRIBUTIONS (FLOW DURATION CURVES) 

A popular method of studying the variability of streamflow is through flow duration curves which can 
be regarded as a standard reporting output from hydrological data processing. Some of their uses are: 

in evaluating dependable flows in the planning of water resources engineering projects 
in evaluating the characteristics of the hydropower potential of a river 
in assessing the effects of river regulation and abstractions on river ecology 
in the design of drainage systems 
in flood control studies 
in computing the sediment load and dissolved solids load of a river 
in comparing with adjacent catchments. 
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A flow-duration curve is a plot of discharge against the percentage of time the flow was equalled or 
exceeded. This may also be referred to as a cumulative discharge frequency curve and it is usually 
applied to daily mean discharges. The analysis procedure is as follows: 

Taking the N years of flow records from a river gauging station there are 365n daily mean discharges.  

1. The frequency or number of occurrence in selected classes is counted (Table 7.1). The class 
ranges of discharge do not need to be the same. 

2. The class frequencies are converted to cumulative frequencies starting with the highest discharge 
class. 

3. The cumulative frequencies are then converted to percentage cumulative frequencies. The 
percentage frequency represents the percentage time that the discharge equals or exceeds the 
lower value of the discharge class interval.  

4. Discharge is then plotted against percentage time. Fig. 7.1 shows an example based on natural 
scales for the data in Table 7.1. A histogram plot may also be made of the actual frequency (Col. 
2) in each class, though this is not as useful as cumulative frequency. 

5. The representation of the flow duration curve is improved by plotting the cumulative discharge 
frequencies on a log-probability scale (Fig. 7.2). If the daily mean flows are log normally 
distributed they will plot as a straight line on such a graph. It is common for them to do so in the 
centre of their range. 

 
Daily discharge class 

 
1 

Frequency 
 

2 

Cumulative frequency 
 

3 

Percentage cumulative 
frequency 
4 

Over 475 
420-475 
365-420 
315-365 
260-315 
210-260 
155-210 
120-155 
105-120 
95-105 
85-95 
75-85 
65-75 
50-65 
47-50 
42-47 
37-42 
32-37 
26-32 
21-25 
16-21 
11-16 

Below 11 

3 
5 
5 
8 

25 
36 
71 
82 
52 
42 
50 
58 
83 

105 
72 
75 
73 
84 

103 
152 
128 
141 

8 
Total days = 1461 

3 
8 

13 
21 
46 
82 

153 
235 
287 
329 
379 
427 
520 
625 
697 
772 
845 
929 

1032 
1184 
1312 
1453 
1461 

 

0.21 
0.44 
0.89 
1.44 
3.15 
5.61 

10.47 
16.08 
19.64 
22.52 
25.94 
29.91 
35.59 
42.78 
47.71 
52.84 
57.84 
63.59 
70.64 
81.04 
89.80 
99.45 

100.00 
 

Table 7.1: Derivation of flow frequencies for construction of a flow duration graph 
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Figure 7.1:  
Flow duration curve 
plotted on a natural 
scale  

 

 

 

 

 

Figure 7.2:  
Flow duration curve 
plotted on a 
probability scale  

 

 

 

 

 

From Figure 7.2 percentage exceedence statistics can easily be derived. For example the 50% flow 
(the median) is 45 m3 /sec and flows less than 12 m3 / sec occurred for 2% of the time 

The slope of the flow duration curve indicates the response characteristics of a river. A steeply sloped 
curve results from very variable discharge usually for small catchments with little storage; those with a 
flat slope indicate little variation in flow regime. 

Comparisons between catchments are simplified by plotting the log of discharge as percentages of 
the daily mean discharge (i.e. the flow is standardised by mean discharge)(Figure 7.3). A common 
reporting procedure is to show the flow duration curve for the current year compared with the curve 
over the historic period. Curves may also be generated by month or by season, or one part of a record 
may be compared with another to illustrate or identify the effects of river regulation on the river 
regime. 
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Figure 7.3:  
Flow duration curve 
standardised by 
mean flow (after 
Shaw 1995) 

 

 

Flow duration curves provide no representation of the chronological sequence. This important 
attribute, for example the duration of flows below a specified magnitude, must be dealt with in other 
ways. 

7.4 FITTING OF FREQUENCY DISTRIBUTIONS 

7.4.1 GENERAL DESCRIPTION 

The fitting of frequency distributions to time sequences of streamflow data is widespread whether for 
annual or monthly means or for extreme values of annual maxima or minima. The principle of such 
fitting is that the parameters of the distribution are estimated from the available sample of data, which 
is assumed to be representative of the population of such data. These parameters can then be used 
to generate a theoretical frequency curve from which discharges with given probability of occurrence 
(exceedence or non-exceedence) can be computed. Generically, the parameters are known as 
location, scale and shape parameters which are equivalent for the normal distribution to: 

• location parameter  mean (first moment) 
• scale parameter  standard deviation (second moment) 
• shape parameter  skewness (third moment) 

Different parameters from mean, standard deviation and skewness are used in other distributions. 
Frequency distributions for data averaged over long periods such as annual are often normally 
distributed and can be fitted with a symmetrical normal distribution, using just the mean and standard 
deviation to define the distribution. Data become increasingly skewed with shorter durations and need 
a third parameter to define the relationship. Even so, the relationship tends to fit least well at the 
extremes of the data which are often of greatest interest. This may imply that the chosen frequency 
distribution does not perfectly represent the population of data and that the resulting estimates may be 
biased.  

Normal or log-normal distributions are recommended for distributions of mean annual flow.  

7.4.2 FREQUENCY DISTRIBUTIONS OF EXTREMES 

Theoretical frequency distributions are most commonly applied to extremes of time series, either of 
floods or droughts. The following series are required: 
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• 

• 

• 
• 
• 
• 
• 
• 
• 
• 

maximum of a series: The maximum instantaneous discharge value of an annual series or of a 
month or season may be selected. All values (peaks) over a specified threshold may also be 
selected. In addition to instantaneous values maximum daily means may also be used for 
analysis. 
minimum of a series: With respect to minimum the daily mean or period mean is usually selected 
rather than an instantaneous value which may be unduly influenced by data error or a short lived 
regulation effect. 

The object of flood frequency analysis is to assess the magnitude of a flood of given probability or 
return period of occurrence. Return period is the reciprocal of probability and may also be defined as 
the average interval between floods of a specified magnitude. 

A large number of different or related flood frequency distributions have been devised for extreme 
value analysis. These include: 

Normal and log-normal distributions and 3-parameter log-normal 
Pearson Type III or Gamma distribution 
Log-Pearson Type III 
Extreme Value type I (Gumbel), II, or III and General extreme value (GEV) 
Logistic and General logistic 
Goodrich/Weibull distribution 
Exponential distribution 
Pareto distribution 

 

Different distributions fit best to different individual data sets but if it is assumed that the parent 
population is of single distribution of all stations, then a regional best distribution may be 
recommended. A typical graphical output of flood frequency distribution is shown in Figure 7.4. 

 

 

 

 

Figure 7.4:  
Flow frequency curve 
showing discharge plotted 
against return period (top) 
and probability (lower) 
(after Shaw, 1995) 

 

 

 

 

 

 

It is clear that there is no single distribution that represents equally the population of annual floods at 
all stations, and one has to use judgement as to which to use in a particular location depending on 
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experience of flood frequency distributions in the surrounding region and the physical characteristics 
of the catchment. No recommendation is therefore made here.  

A standard statistic which characterises the flood potential of a catchment and has been used as an 
‘index flood’ in regional analysis is the mean annual flood, which is simply the mean of the maximum 
instantaneous floods in each year. This can be derived from the data or from distribution fitting. An 
alternative index flood is the median annual maximum, similarly derived. These may be used in 
reporting of general catchment data. 

Flood frequency analysis may be considered a specialist application required for project design and is 
not a standard part of data processing or validation. Detailed descriptions of the mathematical 
functions and application procedures are not described here. They can be found in standard 
mathematical and hydrological texts or in the HYMOS manual. 

7.5 TIME SERIES ANALYSIS 

Time series analysis may be used to test the variability, homogeneity or trend of  a streamflow series 
or simply to give an insight into the characteristics of the series as graphically displayed. The following 
are described here: 

moving averages • 
• 
• 
• 

residual series 
residual mass curves 
balances 

 

7.5.1 MOVING AVERAGES 

To investigate the long term variability or trends in series, moving average curves are useful. A 
moving average series Yi of series Xi is derived as follows: 

                       (7.5) Y ∑
+

=
+=

−=

Mij

Mij
ji X

)1M2(
1

where averaging takes place over 2M+1 elements. The original series can be plotted together with the 
moving average series. An example is shown in Table 7.2 and Figure 7.5 
 

I 
 
1 

Year 
 
2 

Annual runoff 
(mm) 

3 

Totals for moving average 
=Xi-1  + Xi  +  Xi+1 

4 

Moving average 
Yi = Col 4 / 3 

5 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
1984 
1985 
1986 
1987 
1988 

520 
615 
420 
270 
305 
380 
705 
600 
350 
550 
560 
400 
520 
435 
395 
290 
430 

1020 
900 

 
520+615+420 = 1555 
615+420+270 = 1305 
420+270+305  =  995 
270+305+380  =  955 
305+380+705 = 1390 
380+705+600 = 1685 
705+600+350 = 1655 
600+350+550 = 1500 
350+550+560 = 1460 
550+560+400 = 1510 
560+400+520 = 1480 
400+520+435 = 1355 
520+435+395 = 1350 
435+395+290 = 1120 
395+290+430 = 1115 
290+430+1020 =1740 
430+1020+900 =2350 

 
518.3 
435.0 
331.7 
318.3 
463.3 
561.7 
551.7 
500.0 
486.7 
503.3 
493.3 
451.7 
450.0 
373.3 
371.7 
580.0 
783.3 

Table 7.2: Computation of moving averages (M = 1) 
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Figure 7.5:  
Moving average of 
annual runoff 

 

 

 

7.5.2 MASS CURVES AND RESIDUAL MASS CURVES 

These methods are usually applied to monthly data for the analysis of droughts. 

For mass curves, the sequence of cumulative monthly totals are plotted against time. This tends to 
give a rather unwieldy diagram for long time series and should not be used.  Residual mass curves or 
simply residual series are an alternative procedure and has the advantage of smaller numbers to plot. 
An example is shown in Figure 7.6, each flow value in the record is reduced by the mean flow and the 
accumulated residuals plotted against time. A line such as AB drawn tangential to the peaks of the 
residual mass curve would represent a residual cumulative constant yield that would require a 
reservoir of capacity CD to fulfil the yield, starting with the reservoir full at A and ending full at B. 

 

 

 

 

Figure 7.6:  
Residual mass curve 
used in drought 
analysis  

 

 

 

 

7.5.3 RUN LENGTH AND RUN SUM CHARACTERISTICS 

Related properties of time series which are used in drought analysis are run-length and run-sum. 
Consider the time series X1 ................Xn and a constant demand level y as shown in Figure 7.7. A 
negative run occurs when Xt is less than y consecutively during one or more time intervals. Similarly a 
positive run occurs when Xt is consecutively greater than y. A run can be defined by its length, its sum 
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or its intensity. The means, standard deviation and the maximum of run length and run sum are 
important characteristics of the time series. 

upcrossing downcrossing upcrossing

positive
runlength

negative
runlength

positive
runsum

negative
runsum

demand level

y

X

time

Figure 7.7: Definition diagram of run-length and run-sum  

7.5.4 STORAGE ANALYSIS 

Use of sequent peak algorithm can be made for computing water shortage or equivalently the storage 
requirements without running dry for various draft levels from the reservoir. The procedure used in the 
software is a computerised variant of the well known graphical Ripple technique. The algorithm 
considers the following sequence of storages: 

Si   = Si-1    +     (Xi   -    Dx)  Cf for   i  =  1, 2N  ; S0  =  0                (7.6) 

Where 
 Xi    =     inflow 
 Di    =     DL mx   
 mx   =     average of xi , i  =  1, N 
 DL   =     draft level as a fraction of mx 

 Cf    =     multiplier to convert intensities into volumes (times units per time interval) 
 

The local maximum of Si larger than the preceding maximum is sought. Let the locations be k2 and k1 
respectively with k2 > k1. Then the largest non-negative differences between Sk1 and Si ,   i = k1 …, 
k2 …,  is determined, which is the local range. This procedure is executed for two times the actual 
series Xi = XN+i . In this way initial effects are eliminated. 

7.5.5 BALANCES 

This method is used to check the consistency of one or more series with respect to mass 
conservation. Water balances are made of discharge series at successive stations along a river or of 
stations around a junction. The method has already been described in detail with an example in Part 
II, Chapter 12. 
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7.6 REGRESSION /RELATION CURVES 

Regression analysis and relation curves are widely used in validation and for the extension of records 
by the comparison of the relationship between neighbouring stations. Procedures have been 
described with respect to climate, water level and discharge, see part II. 

7.7 DOUBLE MASS ANALYSIS 

The technique of double mass analysis is again widely used in validation of all climatic variables and 
is described in Part II, for rainfall, for climate and for discharge. For discharge series the technique is 
particularly useful for validation purposes by comparing an observed discharge series with a 
computed discharge series, as shown in Chapter 2. The method is not discussed further here. 

7.8 SERIES HOMOGENEITY TESTS 

Series homogeneity tests with respect to climate are described in Part II, Chapter 2 for the following: 

Student’s t test for the stability of the mean • 
• 
• 

Wilcoxon-W test on the difference in the means 
Wilcoxon-Mann-Whitney U-test 

 

Series homogeneity tests may also be applied to streamflow but it should also be recognised that 
inhomogeneity of streamflow records can arise from a variety of sources including: 

• data error 
• climatic change 
• changes in land use in the catchment 
• changes in abstractions and river regulation 
 

7.9 RAINFALL RUNOFF SIMULATION 

Rainfall runoff simulation for data validation is described in Chapter 3 with particular reference to the 
Sacramento model which is used by HYMOS. The uses of such models are much wider than data 
validation and include the following: 

• filling in and extension of discharge series 
• generation of discharges from synthetic rainfall 
• real time forecasting of flood waves 
• determination of the influence of changing landuse on the catchment (urbanisation, afforestation) 

or the influence of water use (abstractions, dam construction, etc.) 
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8 ANALYSIS OF WATER QUALITY DATA 

8.1 INTRODUCTION 

8.1.1 OBJECTIVES 

This chapter presents aspects of data analysis that are relevant to the surface water quality data 
collected by central and state organisations. It is prepared for water quality specialists in the data 
centres, who are responsible for analysing water quality data compiled from different laboratories. 
While data analysis is done for multiple purposes, and many different types of analyses are possible, 
this chapter focuses on the data analysis needed for the production of a standardised yearbook for 
surface water quality as presented in chapter 14. As such, it is not a complete overview of all the 
possible tests and analyses that can be done for water quality data – rather is it a selection geared for 
regular production of yearbooks. 

This chapter presents data validation and different statistical analyses, discusses the relevance and 
possible applications of each analysis and gives examples using some water quality data sets. In 
most cases, the examples have been processed using the HYMOS software. This chapter is NOT 
intended to be a detailed HYMOS tutorial for water quality data analysis, but presents the method, 
results of analyses and results as calculated in HYMOS.  

8.1.2 RELATION HYMOS AND SWDES 

The HP water quality laboratories all have customised software for data entry of analytical results 
(SWDES). SWDES also has the functionality to make some simple data analysis and graphical 
presentation. However, for more advanced data analysis, also with possibilities for comparison of data 
from different laboratories, HYMOS is the required software.  

The procedure for data analysis is as follows: 

• Laboratories enter analytical data in SWDES 
• Laboratories can make initial data analysis and graphical presentation of their data analysis 

results 
• On a regular basis, laboratories should export data from SWDES and send a data diskette to the 

State Data Center where HYMOS is installed. 
• Complete analysis of water quality data and production of yearbooks will be done by the water 

quality specialist at the State Data Center, using HYMOS. 

 

8.1.3 SAMPLE DATA SETS 

Some sample water quality data sets are used in many of the examples presented in this chapter. 
These data sets are given at the end of this chapter and are referred to in the text when they are used 
in examples. An overview of data sets including the Station and Series name in HYMOS (Water 
Quality Test Data) is given in Table 8.1. 
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HYMOS No. Source In Report 

Station Series 
For: 

1 (modified after) Gilbert, p. 
190  

Table 8.18, 
Fig. 8.1, Tab. 8.2 

Outliers Ros  Rosner - outliers 

2 (modified after)  
McBean p.120 

Table 8.6 
Also used for Rosner 
since n=25  

Outliers DX2 Dixon – outlier 
(also Rosner) 

3 McBean  Example 8.3 Outliers DIX Dixon – outlier 
4 Gilbert, p144 Table 8.19 BasicStat NO3 Basic Statistics 
5 Stowa1  

Cd at Neerbeek 
Table 8.20 STOWA1 QCD • Basic Stats 

• Linear Trend 
• Box-Whisker 

6 Stowa2   
PO4 Bergsche Achterplas 

Table 8.21 Amstdampl
as 

Ros Step trend on paired 
data 

Table 8.1: Overview of Data Sets used  

8.2 VALIDATION AND SCREENING 

Validation and screening are important first steps in data processing. HYMOS offers a range of 
tabular, graphical, computational and statistical validation techniques for these purposes, such as: 

plotting of time series • 
• identifying and flagging of outliers 

Various options are available for series completion. Among these are interpolation techniques which 
use series relations derived with e.g. regression techniques or spatial relations. Much emphasis has 
been given to facilities for administration of the data processing steps and data qualification features. 
The latter include assignment of labels to individual data indicating the source - e.g. original or 
corrected - and reliability of data. 

Screening of data aims at detecting outliers. An outlier can be defined as an observation that does not 
matches with the pattern of earlier observations. Outliers may be the result of mistakes in the data 
generation process but could also be an indication of a true change in the system under study, such 
as an accidental spill on a river stretch. A shear infinity of causes of mistakes is possible in the 
starting with sample collection, transport, storage and analysis upto entering into files and computers. 
Since it is best to detect mistakes as soon as possible after they have been made, extensive data 
checking is done upon entering data in the laboratories (using SWDES software). Part of these checks 
are again described in Section 8.2.1. Section 8.2.2 describes how historical data from the same 
location can be used to check newly entered data. Section 8.2.3 illustrates Rosner’s test for detecting 
one or more outliers in a series of observations.  

After identification of one or more outliers, a decision has to be made what to do with the data point. If 
an obvious mistake is detected than, if possible, the corrected value wil be entered. Otherwise the 
data point may be excluded. Section 8.2.4. describes the options and how to keep track of original 
data and corrected data in HYMOS.   

8.2.1 CONSISTENCY CHECKS 

Primary data checking is done when data are entered into SWDES software in the laboratories. Part 
of the primary checking is repeated in HYMOS. There is the reason for this duplication: if in SWDES 
an outlier is detected and there is no traceable error in the sampling or analysis, the observation will 
remain in the database. In HYMOS this observation should be checked again. At the level of HYMOS, 
a more powerful analysis is possible because of more statistical tests and because more data (from 
different stations or agencies) may be available. 
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8.2.2 CONTROL CHARTS 

Control charts should be established for all monitoring stations and all parameters based upon 
historical data. These plots serve as a guide for when investigation action is required.  

The control chart is usually made based on individual data points. Values for the previous 3 years are 
used to calculate the mean, and upper/lower limits. New values can then be compared to the 
historical range of data.  

If there are a lot (many years) of data, annual or seasonal means can be used instead of individual 
data points. In this case, it will be better to use the previous 5-10 years of data to make the control 
chart, in order to have enough data values. Note: control charts assume that the data are normally 
distributed (Gilbert, (1887), p. 194). 

Construction of the control chart for historical data is similar to the preparation of the Shewart control 
chart used for within-laboratory AQC (see WQ training module no. 49). The control chart shows a set 
of data points, together with the central line (mean of the data), warning limits (±2 sd) and control 
limits (±3 sd). 

If a set of water quality data is obtained for a specific station, some variation of the observed values 
will be evident. However, over a period of time (e.g. 3 years), the expected mean concentration, range 
of values and variations can be determined. If there are no external influences, any new observations 
should fit the data distribution established by the historical data (e.g. last 3 years). The function of a 
control chart is to show the historical data, together with the mean (central line) the warning limits and 
the control limits. New data can be plotted on the established control chart to identify any deviation 
from the historical pattern. Before a control chart can be constructed, it is necessary to define a 
meaningful historical data set. For surface water quality monitoring programme with at least 6 
observations a year, a period of 3 years should provide a meaningful historical data set. For 
groundwater quality monitoring, only one or two observations a year are typically available. A control 
chart for this type of data may be less meaningful, or would need  

Reference: page 194-202 Gilbert and HP Water Quality training modules on AQC. 

8.2.3 OUTLIERS 

Data outliers are extreme (high or low) values that do not conform with the main body of a data set. 
Outliers in water quality data sets can occur due to practical mistakes or instrumental failure in all 
aspects of water quality sampling and analysis: from sample collection, transport, storage, analysis or 
data entry. They may result from transcription or keypunch errors, or can be the result of instrument 
breakdowns, calibration problems or power failures.  

The presence of one or more outliers within a data set may greatly influence any calculated statistics 
and yield biased results. Thus outliers should be identified, flagged, and possibly removed from a data 
set. The handling of outliers is discussed in Sub-section 8.2.4. 

Several procedures have been developed as alternative methods for detecting outliers, including 
statistical tests to determine whether an observation appears extreme and does not fit the distribution 
of the rest of the data. Suggestions for identifying outliers are: 

Graphical analysis of data (visual), • 
• 
• 

Rosner’s test (statistical, n ≥ 25) 
Dixon’s test (statistical, n ≤ 25);  
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Graphical Analysis of Data 

Graphical analysis of data is a useful first step to visually check if there are any outliers in a data set. 
Graphical analysis can identify suspected outliers, which should then be checked with a formal 
statistical analysis. Graphical analysis can be made by ranking the data (in increasing order) and 
preparing a probability plot or linear plot of ranked data.  Figure 8.1 shows a simple linear plot of the 
ranked data in Table 8.18, as concentration vs. data rank. The highest and lowest values stand out 
from the rest of the data and may be outliers. The data set can be analysed with Rosner’s test to see 
if the data values are indeed outliers. 

Sample data set Rosner's Test (modified after Gilbert p190)
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Figure 8.1: Plot of sample concentrations (from Table 8.18 concentration vs. rank),  
  showing possible outliers. 

Rosner’s Test  

Introduction and applicability 

Rosner’s test is a sequential procedure for identifying up to 10 outliers. The test assumes that the 
population has a normal distribution. If a lognormal distribution is more plausible, all computations 
should be performed on the logarithms of the data. Rosner’s approach is designed to avoid masking 
of one outlier by another. Masking occurs when an outlier goes undetected because it is very close in 
value to another outlier.  

The maximum number of outliers detected is 10. The procedure repeatedly deletes the value farthest 
from the mean and re-computes the test statistic after each deletion. A table is used to evaluate the 
test statistic when n ≥ 25 and n ≤ 5000. Rosner’s test is ‘two-tailed’ since the procedure identifies 
either suspiciously large or suspiciously small data.  

Rosner’s test can be applied to a dataset when: 

The data is normally distributed • 
• The data points are independent of each other 
• The number of values (n) in the dataset is ≥ 25 
• The dataset is ideally without trend or periodicity 
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Calculation 

The value of Rosner’s test is calculated with the following formulas: 
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Where: 

R(i+1) = Test statistic for deciding whether the i+1 most extreme values in the data set are 
outliers from a normal distribution 

X(i) The mean of the n-i observations in the data set that remain after the i most extreme 
observation(s) have been deleted 

s(i)   = The standard deviation of the n-i observations in the data set that remain after the i 
most extreme observations have been deleted 

x(i)
    = The observation which is the furthest from the mean (largest difference with the mean) 

after i most extreme data (large or small) have been removed.  
xj  = Observation value (with rank j) 
n   = The total number of observations in the data set 
i   =  Index number for the number of extreme observations removed from the dataset 

Rosner’s test is applied to the following hypothesis: 

H0: The entire data set is from a normal distribution, there are no outliers • 
• H1: The data set contains 1, 2… or 10 outliers. 
 

The critical values for λ(i+1) are tabulated (and computerised in HYMOS) for comparison with R(i+1).  

The following procedure is followed (starting with the full dataset, i=0) 

1. Compute the mean and standard deviation 
2. Compute the Rosner’s test statistic R(i+1), where x(i) is the most extreme value in the dataset with 

n-i data 
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3. Retrieve the tabled critical value λ(i+1). 
4. Compare the two test values, reject H0 when R(i+1) > λ(i+1) .  
5. Remove the most extreme value from the data (raise i with 1) and redo the procedure, starting 

from step 1 up to the maximum of 10 iterations. 
6. Find the highest value of i where R(i+1) > λ (i+1): if i=0 accept H0: dataset contains no outliers, if i ≠ 0 

then accept H1: dataset contains i+1 outliers. 
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Example 8.1 Rosner’s test for outliers 

The data set in Table 8.18, see Figure 8.1 is tested for outliers. The observations of nitrate concentration 
are ordered from smallest to largest (n=55), and are evaluated using Rosner’s test in HYMOS. We have 
already seen  that the highest data value may be an outlier.  

The test proceeds by first checking the complete data set (n=55,  i=0) to see if one outlier is present. After 
that the test proceeds to test if two outliers are present until the maximum of 10 outliers is reached. The 
test stops when the maximum number of outliers to test is reached. 

i=0 no extreme value is removed complete dataset is tested if 1 outlier exists 
i=1 1 extreme value is removed reduced dataset is tested if 2 outliers exist in the dataset,  
i=2 2 extreme value is removed reduced dataset is tested if 3 outliers exist in the dataset 
etc. up to maximum of i=9  

Statistical Tests on Data Homogeneity and Randomness 
==================================================== 
 
One Series Test 
--------------- 
 
Series code: Outliers    Ros 
 
Date of first element in series= 1983 5 19 0 0 
Number of data                 =  55 
 
Rosner's Test 
-------------------- 
Hypothesis: H0: Series contains no Outliers 
            H1: Series contains Outliers 
 
 
Level of significance is 5 Percent 
 
n mean  st.dev  rem.outl. extreme   date       R-calc R-table     Result 
         
55 3.965  0.6665  0 6.50 3-Jan-97 3.80 3.52 H1 Accepted 
54 3.918  0.5737  1 2.00 19-May-83 3.34 3.51 H0 Accepted 
53 3.955  0.5132  2 2.10 14-Sep-83 3.61 3.505 H1 Accepted 
52 3.990  0.4470  3 5.56 2-Jan-97 3.51 3.50 H1 Accepted 
51 3.959  0.3919  4 2.90 8-Dec-83 2.70 3.49 H0 Accepted 
50 3.980  0.365  5 5.00 1-Jan-97 2.79 3.48 H0 Accepted 
49 3.960  0.338  6 3.20 15-Mar-84 2.25 3.47 H0 Accepted 
48 3.976  0.3223  7 3.40 10-May-84 1.79 3.46 H0 Accepted 
47 3.988  0.3143  8 3.43 12-Sep-84 1.77 3.45 H0 Accepted 
46 4.000 0.3065  9 3.43 10-Oct-84 1.86 3.43 H0 Accepted 
        
Data set contains: 4 outliers         
 

 Table 8.2: Results of Rosner’s tests from HYMOS (Analysis of data in Table 8.18) 

For each value of i (up to i=9),  the key values of Rosner’s test (R calc) are computed and compared to the 
tabulated critical values (R table) as listed in Table 8.2 and 8.3.  

For i=0, the complete data set is evaluated. In this case, 6.50 is the most extreme value in the dataset 
( xj

(i)  as compared to the mean (X(i=0) = 3.965). 
• 

• For i=1, 1 extreme value (6.50 measured on 3-1-97) is thrown out. In this case, 2.00  is the most 
extreme value in the remaining dataset (xj

(i)  ) as compared to the mean (X(i=1) = 3.918). 
 

The Rosner’s test value (Rcalc ) and critical values (  Rtable) for α =0.01 in this example (default  α = 0.05) are 
calculated in HYMOS. The null hypothesis, H0, is tested for each value of I is shown in Table 8.3: 

Data Processing and Analysis January 2003 Page 114 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

 
I Relation Rcalc, Rtable Null Hypothesis Conclusion on outliers 
i=0 Rcalc  >  Rtable H1 is  accepted presence of 1 outlier is shown 
i=1 Rcalc  < Rtable H0 is accepted presence of 2 outliers cannot be shown 
i=2 Rcalc  > Rtable H1 is accepted presence of 3 outliers is shown 
i=3 Rcalc  > Rtable H1 is accepted presence of 4 outliers is shown 
i=4 Rcalc  < Rtable H0 is accepted presence of 5 outliers cannot be shown 
Rows for i=5 to i=9 (testing for 6 to 10 outliers) is not shown because H0 is accepted for all of them (see Table 
8.2) 

Table 8.3 Overview of Rosner’s test results 

The final conclusion is that there is are 4 outliers in the data set. Note from Table 8.2 that outliers no 3 and 
4 (2.10 from 14-sept-83 and 5.56 from 2-jan-97) are ‘masked’ by the first two extreme values (6.5 and 
2.00). Upon removing extreme values, the test becomes more sensitive since the standard deviation 
strongly decreases and the test statistic R becomes higher. 

Reference 

Statistical Methods for Environmental Pollution Monitoring, R.O. Gilbert, 1987, John Wiley & Sons Inc. 

Dixon’s Test 

Introduction and applicability 

Dixon’s test uses individual data points at the high and low end of a sorted data set to check for 
outliers. It should be used for small data sets, i.e. n ≤ 25. Because Dixon’s uses the extremes of a 
data set (both the highs and the lows), if portions of the data set are censored (see Sub-section 8.2.5) 
the procedure cannot be utilised.  

Calculation 

In Dixon’s test, the set of observations is first ranked, in increasing order. The ratio of the difference of 
an extreme (high or low) values from on of its nearest neighbour values is then calculated, using a 
formula that varies with sample size (see Table 8.4), and varies according to whether the suspected 
outlier is the smallest or largest value. This ratio is then compared to a tabulated critical value (see 
Table 8.5) and, if found equal or greater, the extreme value is considered an outlier at the given 
confidence level.  
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Test criterion (r) N 
High outlier Low Outlier 
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−
−

−

11n
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XX
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−
−

−2n

2nn

XX
XX

−
− −
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13

XX
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−
−

−3n

2nn

XX
XX

−
− −

Table 8.4 Formula for test criteria (r) for Dixon’s test 

 

Level of significance α n 
0.30 0.20 0.10 0.05 0.02 0.01 0.005 

3 
4 
5 
6 
7 

0.684 
0.471 
0.373 
0.318 
0.281 

0.781 
0.560 
0.451 
0.386 
0.344 

0.886 
0.679 
0.557 
0.482 
0.434 

0.941 
0.765 
0.642 
0.560 
0.507 

0.976 
0.846 
0.729 
0.644 
0.586 

0.988 
0.889 
0.780 
0.698 
0.637 

0.994 
0.926 
0.821 
0.740 
0.680 

8 
9 

10 

0.318 
0.288 
0.265 

0.385 
0.352 
0.325 

0.479 
0.441 
0.409 

0.554 
0.512 
0.477 

0.631 
0.587 
0.551 

0.683 
0.635 
0.597 

0.725 
0.677 
0.639 

11 
12 
13 

0.391 
0.370 
0.351 

0.442 
0.419 
0.399 

0.517 
0.490 
0.467 

0.576 
0.546 
0.521 

0.638 
0.605 
0.578 

0.679 
0.642 
0.615 

0.713 
0.675 
0.649 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.370 
0.353 
0.338 
0.325 
0.314 
0.304 
0.295 
0.287 
0.280 
0.274 
0.268 
0.262 

0.421 
0.402 
0.386 
0.373 
0.361 
0.350 
0.340 
0.331 
0.323 
0.316 
0.310 
0.304 

0.492 
0.472 
0.454 
0.438 
0.424 
0.412 
0.401 
0.391 
0.382 
0.374 
0.367 
0.360 

0.546 
0.525 
0.507 
0.490 
0.475 
0.462 
0.450 
0.440 
0.430 
0.421 
0.413 
0.406 

0.602 
0.579 
0.559 
0.542 
0.527 
0.514 
0.502 
0.491 
0.481 
0.472 
0.464 
0.457 

0.641 
0.616 
0.595 
0.577 
0.561 
0.547 
0.535 
0.524 
0.514 
0.505 
0.497 
0.409 

0.674 
0.647 
0.624 
0.605 
0.589 
0.575 
0.562 
0.551 
0.541 
0.532 
0.524 
0.516 

Table 8.5 Critical values for the Dixon test of outliers 

Data Processing and Analysis January 2003 Page 116 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

Example 8.2: Dixon’s Test for Outliers (1) 

No. Conc. No. Conc. 
1 0.5 13 12.4 
2 0.6 14 12.4 
3 0.8 15 12.5 
4 1.0 16 12.5 
5 1.1 17 13.1 
6 1.9 18 14.5 
7 2.9 19 20.2 
8 4.6 20 22.1 
9 8.8 21 24.7 

10 9.2 22 24.9 
11 11.1 23 44.0 
12 12.1 24 46.9 
  25 57.0 
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Figure 8.2: Plotted concentration

Using the data in Table 8.6, to test if the hig
Dixon’s test criteria are calculated: 
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The critical value for the highest value at n=
considered an outlier at the 95% level of signific

The critical value of the lowest value for n=25, 
an outlier at the 95% level of significance. 

Note 

Since n=25 in this example, the data set may b
most extreme values are identified as outliers a
Dixon’s test does not compensate for ‘masking’
(leaving 24 data points) Dixon’s test would ide

Data Processing and Analysis 
Table 8.6: 
Measured concentrations (mg/l) at a monitoring 
site  (n=25) 
 dataset Dixons 

15 20 25 30

Rank number

s for Dixons test presented in Table 8.6 

hest value (x25=57) or lowest value (x1=0.5) is an outlier, 

0069.0
5.044
5.08.0

1
=

−
−

=

25 at 95% is 0.406. Because r < 0.406, then x25 is not 
ance.  

95% is 0.0069. Because r < 0.406, then x1 is not considered 

e analysed using Rosner’s test also. In that case the three 
t the 95% confidence level! This difference occurs because 
, e.g. if the most extreme value were removed from the data 
ntify the value 46.9 as an outlier also (Dixons’s coefficient 
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becomes 0.477 compared to a tabulated value of 0.413 at the 95% confidence level). Also the then next 
extreme value of 44 could be identified as outlier if Dixon’s test were ‘iterative’ as is Rosner’s test. 

Example 8.3 Dixon’s test for outliers (2) 

Concentration measurements for dissolved oxygen (mg/l) in surface water are as follows (data are sorted 
in increasing order,  n=11): 

0.50, 3.77, 3.80, 3.90, 3.92, 4.45, 4.95, 5.44, 5.61, 6.21, 9.51 

The data set is plotted in Figure 8.3 and Dixon’s test is applied to determine whether the highest and 
lowest values are outliers: 

Since both r11 (=0.6794) and r1 (=0.5779) are larger than the critical value of 0.576 at n=11 and 5% (Table 
8.5), both the highest and the lowest value are considered as an outlier. 

5779.0
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xx
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At 1% confidence level the test criterion becomes 0.679 (Table 8.5) and therefore the highest value is still 
considered an outlier (0.6794 > 0.679) whereas the lowest value of 0.5 is not considered an outlier (See 
calculated HYMOS result at the 1% confidence level in Table 8.7). The test is thus somewhat more 
sensitive for outlier detection for extreme high values  
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Figure 8.3 Sample data for Dixon’s test, in example 8.3 
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Data Proc
Statistical Tests on Data Homogeneity and Randomness 
==================================================== 
 
One Series Test: Dixon Test for outliers 
---------------------------------------- 
 
Series code  : Outliers    DIX 
 
Date of first element in series = 01-01-1983 
Number of valid data            =  11 
 
Level of significance is 1 Percent 
 
Hypothesis: H0: The outlier belongs to the sample 
            H1: The outlier does not belong to the sample 
 
Ranked test data 
---------------------- 
       1    0.5 
       2    3.77 
       3    3.8 
       4    3.9 
       5    3.92 
       6    4.45 
       7    4.95 
       8    5.44 
       9    5.61 
      10    6.21 
      11    9.51 
 
Test statistics of lowest value  
-------------------------------- 
Calculated critical value  = 0.5779334 
Table critical value       = 0.679 
 
Result: 0.5779334 < 0.679  H0 not rejected 
 
Test statistics of highest value 
-------------------------------- 
Calculated critical value  = 0.6794425 
Table critical value       = 0.679 
 
Result: 0.6794425 > 0.679  H0 rejected 
 

able 8.7: Sample data for Dixon’s test, example 8.3 

ce 

ean and Rovers, 1998. Statistical Procedures for Analysis of Environmental Monitoring Data 
Risk Assessment, Prentice Hall PTR Environmental Management and Engineering Series. 
l K. Kanji, 1999. 100 statistical tests. SAGE Publications. 
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8.2.4 HANDLING OF OUTLIERS 

After an outlier has been identified, one must decide what to do with it. If an outlier is found, the outlier 
should be flagged1 in the data set. For further analysis of the data set, a decision must be made as to 
what to do with the data value: 

• 

• 

                                                     

Leave the outlier data value in the data set, and use statistical tests that are not so sensitive to 
outliers.  
Remove the outlier data value for all further statistical tests. 

 

Caution should be used in removing outliers! Outliers should not be removed on the basis of statistical 
tests (as Rosner’s) only. First of all there is always a chance (the level of confidence of the test, α) 
that the test incorrectly declares an observation as outlier. Multiple unusually high outliers may 
indicate that the data should be modeled by a skewed distribution such as the lognormal distribution. 
Outliers may always be a true representation of a rare event in the field, such as rain, flood, religious 
bathing, extra factory effluent etc. etc.  

In HYMOS the original data point is always kept in the database and marked as such. A corrected 
value can therefore always be distinguished from the original.  

8.2.5 CENSORED DATA 

This section is relevant for data near the detection limit of the analytical method. This situation often 
occurs for trace contaminants analysed by advanced equipment like AAS or GC. 

In some environmental sampling situations, the true concentration of the sample being measured may 
be very near zero, in which case the value may be lower than the measurement limit of detection 
(LOD). The limit of detection (LOD) is defined as the ‘lowest concentration level that can be 
determined to be statistically different from a blank’.  

In this situation, analytical laboratories may report them as not detected (ND) values, zero, or less-
than (LT) values. The analytical laboratory may also report the value as  <LOD, where LOD is given a 
numerical value. This is the procedure which is incorporated in SWDES. Data sets containing these 
types of data are said to be censored because the data values below the LOD are not available.  

For statistical analysis of the data, the missing data make it difficult to summarize and compare data 
sets and can lead to biased estimates of means, variances, trends and other values. For analysis of 
data, a value of ½ LOD is to be utilised. When a value of <LOD is entered in SWDES, this value is 
automatically converted to ½ LOD for analysis within HYMOS.  

8.3 BASIC STATISTICS 

8.3.1 PROPERTIES OF THE DATA SET 

There are two important properties of the data set which should be known before extensive data 
analysis begins: 

 

1 Flagging the data means adding a check mark or ‘flag’ in the data set next to a specific data point, to indicate 
that it has been indicated as an outlier. This is not the same as deleting the data, because the flagged data may 
continue to be used in further analysis. 
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• 
• 

is the data equidistant or non-equidistant? 
is the data normally distributed? 

 

These properties influence the statistical tests that can be applied in data analysis.  

Equidistant data 

Data which are equidistant are present in the data set at regular intervals, of e.g. 1 per day, 1 per 
month, 3 per month, 1 per season, 6 per year, etc.  Certain statistical analyses require that data is 
equidistant. In the event that one or more data values is missing (not measured or not reported) then 
the missing value must be filled by one or more ‘data filling’ methods.  

Ideally, water quality data should be equidistant. The water quality monitoring being conducted is 
expected to take place at regular intervals for the identified baseline, trend and surveillance stations. 
For example it recommended that baseline stations should be monitored a minimum of once every 2 
months (see HIS Volume 6). CWC is generally monitoring its water quality stations 3 times per month.  

In practice, there may be logistical problems in regularly obtaining a water quality sample for a 
particular station, or some rivers may only be flowing seasonally. Therefore, many water quality data 
sets are ‘non-equidistant’.  

Normally distributed data 

Most frequency distributions for random observations, when the total number of observations is very 
large tending to be the same as the population, N, conform to the normal distribution. The distribution 
is give by the theoretical equation: 

( )

πσ
=

σµ−−

2
ey

22
i 2x

                    (8.3) 

where  y =  frequency of observations  

µ =  the mean 

σ =  standard deviation 

The standard deviation is given by: 

                       (8.4) σ
( )
N

Nxx 2
i

2
i∑ ∑−

=

For a normal distribution, 68.3 % of the total observations lie in the range µ + σ, 95.5% in the range µ 
+ 2σ and 99.7% in the range µ + 3σ. This is illustrated in Figure 8.4. 

Many statistical analyses require that the data being studied are normally distributed. Such statistical 
test are called parametric analyses. Unfortunately, most water quality data are NOT normally 
distributed. Analysis of the data is therefore best done using special non-parametric statistical tests.
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Figure 8.4: 
Normal distribution of a set of 
random observations 

 

 

 

 

The common properties of water quality data, i.e. non-equidistant and non-normally distributed are 
accommodated in HYMOS, which can analyse both equidistant and non-equidistant data, and which 
has both parametric and non-parametric statistical tests. In the following chapters, several statistical 
tests are described for analysis of water quality data. Most of the tests have been selected because 
they are applicable to the special properties of water quality data.  

8.4 SUMMARY STATISTICS 

For data set of xi,(i=1, n), HYMOS calculates a number of basic summary statistics which are 
described below. Calculation of these statistics is usually the first step of any data analysis after data 
validation procedure. The data sets in Table 8.19 and 8.20 are used to illustrate most of the principles 
of basic statistics presented in this chapter.  

Arithmetic mean 

The arithmetic mean,x, of a set of data is calculated by adding all the observed values and dividing 
the sum by the total number of observations, n: 

                       (8.5) x ( ) nx............xx n21 ++=

or, in different notation:  

∑=
=

n

1i
ix

n
1x                      (8.6) 

where  x1, x2,........xn  are the observed values and n is the total number of observations. 

The arithmetic mean is the most common measure of the ‘central tendency’ of a data set, i.e. its 
center point.  
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Geometric mean  

When there are a few very high values or very low, such as in the cases of bacteriological analysis, 
the arithmetic mean is not necessarily representative of the central tendency. In such cases the 
geometric mean, g, is used: 

                       (8.7) g ( ) n
1

n321 x................xxx ××=

Median  

The median is the middle value of a ranked set of data. If the sample size, n, is an odd number, one-
half of the values exceed the median and one-half are less. When n is even, the median is the 
average of the two middle terms.  

Standard deviation 

The tendency of observations to cluster (or not to cluster) around the mean value, is measured by 
standard deviation, s.   

Standard deviation is calculated as: 

                       (8.8) (s )1n/(})xx.......()xx)xx{( 2
n

2
2

2
1 −−+−+−=

or 
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=
 s

A small value of s signifies that most of the observations are close to the mean value.  A large value 
indicates that the observed values are spread over a larger range. The standard deviation has the 
same units as the quantity measured, i.e. for a set of concentration observations in mg/l, the standard 
deviation is also in units of mg/l. 

Range  

The range gives the minimum and the maximum values in the data set, where:  

Minimum is the minimum value in a set of data observations: Xmin = min(x1, x2, x3, ..., xn) • 
• Maximum is the maximum value in a set of data observations: Xmax = max(x1, x2, x3, ..., xn) 
 

where  x1, x2,........xn  are the observed values and n is the total number of observations. 

Range = <minimum>  to  <maximum> 

Example 8.4: Basic Statistics in HYMOS 

The example data set in Tables 8.19 and 8.20 are used to illustrate calculations of the ‘Basic Statistics’. 
Results of a HYMOS analyses are presented in Table 8.8 and 8.9 (Section 1, summary statistics). 

Caution 

It should be noted that the formulas used in HYMOS often differ slightly from those in other statistical 
analysis packages (e.g. Excel). Thus calculated results may vary slightly. 
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8.4.1 QUANTILES AND PROPORTIONS 

Quantiles and proportions are related in that they both are concerned with the percentage of a sample 
population relative to a specific concentration. Consider the generic cumulative distribution function 
(cdf) of a set of data, Figure 8.5. 

C
um

ul
at

i v
e  

f r
eq

ue
nc

y

1.0

0.5

Concentration
XcXp

 

 

Figure 8.5: 
Cumulative distribution 
function (cdf), illustrating 
quantiles and percentiles 

 

 

 

 

 

For quantiles (also called percentiles), we are interested in finding: “what is the concentration (xp) that 
corresponds to a specific (e.g the 75th ) percentile of the data set?”. From the vertical (frequency) axis 
of the cdf plot, you can start at the 75th percentile, read horizontally to the function, then read down to 
the corresponding concentration (xp). This is illustrated with the solid line.  

For proportions, we are interested in finding: “what proportion of the data is below a specific 
concentration (xc)?”. From the horizontal (concentration) axis of the cdf plot, you can start at the 
concentration of interest (xc), read up to the function, then read horizontally to the corresponding 
frequency or proportion. This is illustrated with the dashed line.  

It is possible to calculate quantiles and proportions without drawing the cdf for a data set, as 
described below.  

Percentiles or quantiles  

Introduction and applicability 

Percentiles are also called quantiles.  Formally, the pth percentile is such that the there is a probability 
(p), that an observation in the data set will have a concentration less than xp. For example: 

the median is the 50th percentile; There is a probability of 0.5 that an observation will have a 
concentration less than the median (or, 50% of the data are less than the median). 

• 

• 

• 

25th percentile:  There is a probability of 0.25 that an observation will have a concentration less 
than the 25th percentile,  or 25 % of data are less than this value 
75th percentile:  There is a probability of 0.75 that an observation will have a concentration less 
than the 75th percentile,  or 75% of data are less than this value 

Data Processing and Analysis January 2003 Page 124 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

The 25th and 75th percentile are especially important as these values are used in the box and whisker 
plots (see Section 8.5.3) which are commonly used to present water quality data. HYMOS calculates 
the 25% and 75% percentiles (quantiles) as part of the ‘Basic Statistics’ analysis (e.g. Table 8.8, 
Section 1).  

HYMOS also calculates the 10%, 20%, …, 90% percentiles, which are called ‘Decile Values’ in the 
‘Basic Statistics’ analysis (e.g. Table 8.8 and 8.9, Section 3).  

Calculation 

The calculation of a specific percentile is fairly straightforward.   

For a ranked set of data (x1 < x2 < x3  <  xn) the non-exceedance probabilities assigned to the kth 

largest observation is: 

 

 1n
kp
+

=

Hence: 

k = p(n+1) 

where: k =  the kth largest observation in the ranked data set 

p =  the non-exceedance probability of the percentile value, in the range 0 ≤ p ≤ 1 

n =  number of data points 

and  

xp is the concentration relating to rank k 

If k is not an integer, xp is obtained by linear interpolation between the two closest order statistics.  

An example calculation is made using the data in Table 8.19 – Nitrate concentrations measured at 
station ‘BasicStat’. A cumulative distribution frequency (cdf) plot of the data is given in Figure 8.6.  

To calculate the 90th percentile (x90) for a data set where n= 46 

p =  0.9 

n =  46 

k =  0.9 * (46+1) = 42.3 

 

The 90th percentile (x0.90 ) is the concentration between n=42 (x42 ) and n=43 (x43 ) in the ranked data 
set. Checking the data set in Table 8.20, we see the 90th percentile concentration must be between 
14.97 (n=42) and 15.13 (n=43), or 15.0 mg/l. To be even more exact, we could make a proportional 
estimate  (0.3)  between the two values, but this is not really necessary. 

Various alternatives to calculate proportions are available (see plotting distribution in HYMOS Manual, 
Chapter 10.2 ‘fitting distributions’). The method by Chegodayev is presented in the basic statistics and 
assigns a non-exceedance probability to the kth largest value of: 

 4.0n
3.0kp

+
−

=

Data Processing and Analysis January 2003 Page 125 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

Hence: 

k= p(n+0.4)+0.3 
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Figure 8.6: 
Cumulative frequency of ‘Nitrate’ 
concentrations from location Basic 
Statistic (data in Table 8.19) 

 

 

 

 

The 90th percentile value can also be read from the graph, Figure 8.6. Reading horizontally from cdf = 
0.9, and then down to the x-axis, we also obtain a value of 15 mg/l as the 90th percentile. 

Example 8.5 – Basic statistics in HYMOS – Percentiles and Distribution frequency (1) 

An example of percentiles calculation in HYMOS is given, using the same data (Table 8.19). The HYMOS 
analysis results of basic statistics are given in table form (Table 8.6, Section 3, Deciles) and also as a 
graph of cumulative frequency and histogram, (Figure 8.7). This graph is helpful in visualising the 
percentiles. It also clearly shows that the data are not normally distributed.  
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Figure 8.7: Histogram and Cumulative Frequency Distribution for concentrations in Table  
8.19, results from HYMOS ‘Basic Statistics’ analysis  (X-axis ‘Value’ is conc. 
in mg/l) with 10 classes giving concentration intervals of  2.5 mg/L. 
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Example 8.6 - Basic statistics in HYMOS – Percentiles and Distribution frequency (2) 

An example of percentiles calculation is given, using the Cadmium data of station Neerbeek in Table 8.19. 
The HYMOS analysis results of basic statistics are given in table form (Table 8.9, Section 3, Deciles) and 
also as a graph of cumulative frequency and histogram, (Figure 8.6). This graph is helpful in visualising the 
percentiles. It also clearly shows that the data are not normally distributed.  

Basic Statistics
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Figure 8.8: Histogram and Cumulative Frequency Distribution for Cd concentration,  
Station Neerbeek (Table 8.20), results from HYMOS ‘Basic Statistics’ 
analysis  (X-axis ‘Value’ is conc. in µg/l) with 16 classes giving concentration 
intervals of  0.25 µg/L. 

From the graph, percentile values can be determined using the cumulative frequency distribution (cdf) line, 
for example: 

 
Percentile Cdf  (right axis 

graph) 
Conc. reading from graph 
(bottom axis) 

Hymos calculation 
(from Table 8.9) 

90th percentile  0.9 2.5 µg/l 2.54  µg/l 
75th percentile 0.75 1.4 µg/l 1.5  µg/l 
50th percentile  0.5 0.7 µg/l 0.78 µg/l 

 
Reference 

R.O. Gilbert, 1987, Statistical Methods for Environmental Pollution Monitoring, John Wiley & Sons Inc. 
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Proportions  

Introduction 

In proportions, the goal is to estimate the proportion of a data set that is less than (or more than) a 
specific concentration (xc). Such an analysis is important if water quality regulations specify that the 
proportion of the population exceeding a specified concentration xc, (upper limit) must be less than 
some specified value. 

Calculation 

A non-parametric calculation of proportions is quite simple, based on ranked data values. To estimate 
Pxc, the proportion of the population exceeding xc, we calculate: 

Pxc = u/n 

where:  
n = no. of observations  
u = no. of observation exceeding xc 

 

An simple example calculation is made using the data in Table 8.19 – Nitrate concentrations to 
illustrate:  

What is the proportion of the data which exceed 15 mg/l ?  • 
• What is the proportion of the data which a less than 10 mg/l? 
 

From the ranked data set, we know that n= 46 and 4 observations exceed 15 mg/l, while 12 
observations exceed 10 mg/l. Therefore: 

P15 = u/n = 4/46 =0.087 

P10 = u/n = 10/46 =0.217 

The proportion of data exceeding 15 mg/l is 0.087 (8.7%).  

The proportion of data less than 15 mg/l is  (1-0.087 ) or 0.913 (91.3%) 

The proportion of data exceeding 10 mg/l is 0.217 (21.7%).  

The proportion of data less than 10 mg/l is  (1-0.217 ) or 0.783 (78.3%) 

These same results can also be obtained from using the plotted data in Figure 8.6.  For example, by 
starting on the X-axis at 10 mg/l, reading up to the cdf and then to the left axis, we find that the 
proportion of data less than 10 mg/l is ~0.75. The graphical analysis is somewhat less accurate than 
the calculation. 
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Example 8.7 – Basic Statistics in HYMOS – Proportions (1) 

The data in Table 8.19, concentrations at location BasicStat, have been analysed with HYMOS. As part of 
the ‘Basic Statistics’ results, HYMOS also calculates proportions at a certain number of concentration class 
limits (usually 10). This is shown in Table 8.6, Section 4, ‘Cumulative distribution frequency and histogram’.   

For the concentrations given in ‘Upper class limit’, the proportion (probability) of data less than this 
concentration is given. For example, the proportion of data less than 10 mg/l is 0.739. For estimating 
proportions other than those listed as class limits, the cumulative frequency plot of the data (Figure 8.7) 
can be used.  
 

Example 8.8 – Basic Statistics in HYMOS – Proportions (2) 

The data in Table 8.20, cadmium concentrations at location Stowa1, have been analysed with HYMOS. As 
part of the ‘Basic Statistics’ results, HYMOS also calculates proportions at a certain number of 
concentration class limits (usually 10 but in this case 16). This is shown in Table 8.7, Section 4, 
‘Cumulative distribution frequency and histogram’.   

For the concentrations given in ‘Upper class limit’, the proportion (probability) of data less than this 
concentration is given. For example, the proportion of data less than 2.5 µg/l is 0.905. For estimating 
proportions other than those listed as class limits, the cumulative frequency plot of the data (Figure 8.8) 
can be used.  

Reference 

R.O. Gilbert, 1987, Statistical Methods for Environmental Pollution Monitoring, John Wiley & Sons Inc. 
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Data Proc

 T
Series code = BasicStat   NO3 
 First year  =  1983 
 Last year   =  2000 
 
 Actual values are used 
 
1.     Basic Statistics of series BasicStat   NO3 
     ==========================================  
 
 
      Mean              =      7.9602 
      Median            =      5.9050 
      Mode of classes   =      3.7585 
      Standard deviation=      5.2606 
      Variance          =     27.6740 
      Skewness          =      1.4062 
      Kurtosis          =      4.4432 
      Range             =      1.8500 to     23.5300 
      25% Quantile      =      4.2475 
      75% Quantile      =     11.2000 
      Number of elements=          46 
 
2.               95% Confidence Intervals 
           6.3980 <     Mean     <         9.5224 
           9.7291 <   Variance   <        38.9165 
           3.8074 < 25% Quantile <       5.0252 
           7.4897 < 75% Quantile <      14.8310 
 
3. Percentiles 
     Decile                Value        Value 
                                        Chegadayev 
 
        1                  2.816569    2.881928 
        2                  3.700831    3.773879 
        3                  4.585093    4.665830 
        4                  5.469354    5.557780 
        5                  6.353616    6.449731 
        6                  7.237877    7.341682 
        7                  9.106361    9.396246 
        8                 11.755300   12.142650 
        9                 13.504610   15.153950 
 
4. Cumulative frequency distribution and histogram 
 
     Upper class limit   Probability      Probability   Number of elements 
                                          Chegadayev 
 
            .010000         .000000         .000000             0. 
           2.509000         .065217         .058190             3. 
           5.008000         .347826         .338362            13. 
           7.507000         .630435         .618535            13. 
          10.006000         .739130         .726293             5. 
          12.505000         .826087         .812500             4. 
          15.004000         .913043         .898707             4. 
          17.503000         .934783         .920259             1. 
          20.002000         .956522         .941810             1. 
          22.501000         .956522         .941810             0. 
          25.000000        1.000000         .984914             2. 
                                                                 0 
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Series code = STOWA 1     QCD 
 First year  =  1983 
 Last year   =  1996 
 
 Actual values are used 
 
1.     Basic Statistics of series STOWA 1   QCD 
     ==========================================  
 
      Mean              =      1.0825 
      Median            =       .7800 
      Mode of classes   =       .6425 
      Standard deviation=       .8893 
      Variance          =       .7908 
      Skewness          =      1.4671 
      Kurtosis          =      4.7885 
      Range             =       .0500 to      4.0000 
      25% Quantile      =       .4925 
      75% Quantile      =      1.5000 
      Number of elements=          84 
 
2.               95% Confidence Intervals 
            .8895 <     Mean     <       1.2755 
            .5962 <   Variance   <       1.0996 
            .6500 <    Median    <       1.0000 
            .3547 < 25% Quantile <        .6000 
           1.0970 < 75% Quantile <       2.0530 
 
3. Percentiles 
     Deciles for data range 
     Decile                Value 
 
        1                   .245000 
        2                   .400000 
        3                   .500000 
        4                   .650000 
        5                   .780000 
        6                  1.000000 
        7                  1.100000 
        8                  1.700000 
        9                  2.500000 
 
     Deciles for classes 
     Decile                Value        Value 
                                        Chegodayev 
        1                   .205921     .210911 
        2                   .382632     .386374 
        3                   .528558     .530381 
        4                   .657692     .658604 
        5                   .786827     .786827 
        6                   .981071     .979379 
        7                  1.220893    1.217507 
        8                  1.788000    1.773781 
        9                  2.538501    2.519541 
 

     Table 8.9: Results of HYMOS ‘Basic Statistics’ analysis of STOWA1 Cd data (Table 8.20) 
     Continued on next page) 
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4. Cumulative frequency distribution and histogram
 
     Upper class limit   Probability      Probability   Number of elements 
                                          Chegodayev 
 
            .050000         .011765         .008294             1. 
            .445000         .235294         .233412            19. 
            .840000         .541176         .541469            26. 
           1.235000         .705882         .707346            14. 
           1.630000         .776471         .778436             6. 
           2.025000         .835294         .837678             5. 
           2.420000         .882353         .885071             4. 
           2.815000         .941176         .944313             5. 
           3.210000         .952941         .956161             1. 
           3.605000         .964706         .968009             1. 
           4.000000         .988235         .991706             2. 
                                                                0 

 

8.4.2 CONFIDENCE INTERVALS 

Confidence intervals are used to indicate the uncertainty associated with the estimated value of a 
particular parameter. The following confidence intervals are commonly calculated, and are part of the 
‘Basic Statistics’ function in HYMOS (Table 8.8 and Table 8.9):  

confidence interval about the mean  • 
• 
• 

• 
• 
• 
• 

confidence interval about the variance 
confidence interval about the 25th and 75th quantile 

 

In all cases, HYMOS calculates the 95% confidence interval, e.g. there is 95% confidence that the 
mean/variance/quantile is within the given interval. 

Confidence interval about the mean  

Introduction 

The confidence intervals about the mean gives the uncertainty associated with the calculated value of 
the mean for a particular data set. Statistical confidence limits define an interval such that there is a 
specified probability (1-α), that a parameter will be contained in the interval (e.g. 95% for α=0.05). The 
width of the confidence interval increases when: 

more confidence is requested, e.g. 99% (α=0.01) instead of 95% (α=0.05); 
the standard deviation is higher 
the sample size is smaller 
serial correlation is present 

 

Calculation 

For normally distributed data, the confidence interval about the mean is defined as (see HIS Manual, 
Volume 2, Chapter 3): 

                       (8.9) :x 2 1nwith
n
stx

n
st ,/,2/ −=ν×+≤µ≤×− νανα
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or: 
 

 

 n
stx

n
stx

,2/ucl

,2/lcl

×+=µ

×−=µ

να

να

Where: µlcl =  lower confidence limit of mean 

 µucl =  upper confidence limit of mean 

 x =  mean 

 α =  significance level 

 tα,ν  =  critical value of student - t distribution for a confidence level of 1-α, and  
      ν = n-1 degrees of freedom 

 s =  standard deviation 

 n =  number of observations 

 

Note that the sampling distribution of the mean is very nearly normal for n > 30, even when the 
population is non-normal. 

The confidence intervals about the variance are derived from: 

                    (8.10) 1n:with
2

−=ν≤σ≤
x

s
X

s
2,

2
2

21,
2

2 νν

ανα−ν

where: χ2
ν, 1-α/2  upper and lower critical values of χ2 – distribution for a confidence level of  

  1 - α and ν = n – 1 degrees of freedom 

 χ2
ν, α/2 

 

8.5 PRESENTATION  

For preparation of Water Quality yearbooks a number of data presentations are recommended to 
illustrate the important aspects of the water quality status. The presentations (graphs) can all be made 
using HYMOS. Some of the simple presentations can also be made in the Data Entry Software 
(SWDES, water quality). A description and example of each presentation method is given below.  

8.5.1 TIME SERIES 

The time series graph is the first and most important presentation of the data that should be made.  

The time series is a plot of the measured concentration (Y-axis) as a function of time (X-axis). A time 
series plot is usually made for one parameter, at one location, as shown in Figure 8.9, which shows 
the measured values for cadmium at the location Stowa1 for the period 1983-97 (data in Table 8.20). 
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Time Series

STOW A 1 QCD
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Figure 8.9: Time series of cadmium at location STOWA1 

From a visual analysis of a time series plot, you can get an idea about the variability in the data, 
extreme high and low values, and possible trends. This time series shows that the cadmium 
concentration is highly variable, and that there seems to be a general decreasing trend. The statistical 
significance of this trend should be further investigated, as discussed in Sub-section 8.6.2. 

For some special types of data analyses, it may be desirable to plot results for the same parameter 
from 2 different locations on one graph. This would show whether the parameter concentration is 
showing the same concentration pattern at two different locations, maybe indicating a correlation 
between the locations. If a correlation seems to exist based on visual analysis of the time series, then 
further statistical analysis could be conducted. 

Another special analysis is to plot results for two different parameters from one location. This would 
show whether there is a possible correlation between two different parameter concentrations. If a 
correlation seems to exist, based on visual analysis of the time series, then further statistical analysis 
could be conducted. 

8.5.2 LONGITUDINAL PLOTS 

A longitudinal plot is made to show the concentration of a water quality parameter at different 
locations along a river. The plot depicts the measured concentration (Y-axis) as a function of distance 
along the river (X-axis). This distance is often called ‘boating distance’, measured in km from the 
mouth of the river.  
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8.5.3 BOX AND WHISKERS PLOT 

Introduction 

A box and whiskers plot is a useful way of summarising the range and spread of data for a given 
parameter. The box and whiskers plot may be made for one or more parameters or stations, using 
results for a period of time. The selected data will be summarised over a selected period, which can 
be a season, year or several years. The box and whiskers plots present a useful and quick graphical 
summary of data from different locations or from one time period to another. 

The box and whiskers plot depicts the following statistics for the data: 

minimum and maximum(the end of the ‘whiskers’ – this shows the full range of data in the period 
of interest) 

• 

• 

• 
• 

the 25th and 75th percentile (lower and upper end of the ‘box’ – this gives an indication of the 
spread) 
mean of the data in the period of interest (+) 
median of the data in the period of interest (-) 

 

Yearly box and whisker plot 

The purpose of the yearly box and whiskers plot is to show the variation in a water quality parameter 
by comparing the results for different years. The plot is made for data of one water quality parameter 
at one location. For each year, the statistics are calculated and plotted. An example is shown below in 
Figure 8.10 for Cd data in Table 8.20 (Station STOWA1). 
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Figure 8.10: Yearly box and whisker plot for Cd at Station STOWA1 (1983-1996) 
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Seasonal box and whiskers Plot 

The purpose of the seasonal box and whiskers plot is to show the variation in a water quality between 
seasons. The plot is made for data of one water quality parameter at one location. The data is 
analysed per season, for example: winter, summer, monsoon. The beginning and end date of each 
season has to be clearly defined (this can be done in HYMOS).  For each season, the available data 
are used to calculate the statistics and make the box and whiskers plot. An example is shown in 
Figure 8.11, showing the Cd concentrations at location STOWA1 in three different seasons: summer, 
monsoon and winter. The HYMOS summary report is given in Table 8.10 and 8.11. 

The summary report on box and whiskers analysis in HYMOS for the processing period 1-11-1982 to 
28-02-1988 is given (actual data set is longer, see Table 8.20). Note, the effect of the combination of 
processing period and seasons definition (summer: 28-2/31-5, monsoon: 1-6/31-10, winter: 1-11/28-2) 
in this example. The value of 4.00 (19-01-1983, see Table 8.20) is considered part of the winter 
season of 1982! Values for summer and monsoon are missing for 1982. If the processing period starts 
somewhere in 1983, the value 4.00 measured on 19-01-1983 is omitted from analysis. Other software 
packages may not handle seasons correctly. 

T

D

Computation of minimum, maximum, mean, standard deviation, median and percentiles 
 
Series ID: STOWA 1 QCD 
 
MINIMUM 
 28-02/31-05 31-05/01-11 01-11/28-02 Year 
1982   -999.990   -999.990      4.000      4.000 
1983      1.000      2.000      0.500      0.500 
1984      1.000      2.500      1.500      1.000 
1985      0.500      0.500      1.000      0.500 
1986      2.100      1.000      1.000      1.000 
1987      0.500      0.500      1.700      0.500 
1988   -999.990   -999.990   -999.990   -999.990 
 
SUMMARY     0.500     0.500     0.500     0.000 
 
MAXIMUM 
 28-02/31-05 31-05/01-11 01-11/28-02 Year 
1982   -999.990   -999.990      4.000      4.000 
1983      1.000      2.000      0.500      2.000 
1984      1.500      4.000      1.500      4.000 
1985      0.500      0.500      2.900      2.900 
1986      2.100      1.000      2.200      2.200 
1987      0.500      1.700      2.790      2.790 
1988   -999.990   -999.990   -999.990   -999.990 
 
SUMMARY     2.100     4.000     4.000     4.000 
 
MEAN 
 28-02/31-05 31-05/01-11 01-11/28-02 Year 
1982   -999.990   -999.990      4.000      4.000 
1983      1.000      2.000      0.500      1.167 
1984      1.250      3.250      1.500      2.100 
1985      0.500      0.500      1.950      1.225 
1986      2.100      1.000      1.600      1.575 
1987      0.500      0.933      2.245      1.298 
1988   -999.990   -999.990   -999.990   -999.990 
 
SUMMARY     1.100     1.600     1.954     0.765 
……continued for Standard deviation, median, 25% and 75% fraction. 
able 8.10: Example of HYMOS report for min-mean-max series, with 3 seasons 
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 QC+ 
Maximum 

QC- 
Minimum 

QC* 
Average 

QC/ 
Median 

QC1 
25% Quartile 

QC2 
75% Quartile 

28-02 2.6 0.23 1.014783 0.97 0.5 1.3 
1-05 4 0.05 0.7799999 0.5 0.31 0.8025 
01-11 4 0.38 1.47 1.1 0.65 2.2 

Table 8.11: HYMOS example of View for min-mean-max series. These values are used to  
  construct the seasonal summary box and whiskers (Figure 8.11) 

Seasonal Summary box and whiskers plot
Seasons: 1=Summer, 2=Monsoon, 3=Winter
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Figure 8.11: Seasonal box and whiskers summary plot for data from Table 8.20 summary  
  statistics for all summer, monsoon and winter seasons in the period of 1983-1996. 

Location-wise box and whiskers plot 

The purpose of the location-wise box and whiskers plot is to show the variation in a water quality 
parameter at several different locations, i.e. How does the concentration vary from one location to the 
next. The plot is made for data of one water quality parameter for one or possibly more years (the 
number of years should be the same for different locations, otherwise the data are not comparable). 
The data is analysed per location. For each location, the statistics are calculated and plotted. 

8.5.4 STANDARDS COMPARISON 

For many of the water quality parameters, it is useful to compare the measured concentrations with 
Indian or international water quality standards. Such standards are often defined for drinking water or 
irrigation water purposes.  

Comparison of the measured concentrations with standards can be done graphically, by plotting the 
time series of the data together with the standard, which is shown as a horizontal line at the 
acceptable limit. In this manner, it is very easy to see which measurements are above the acceptable 
standard and get a feel for how often this occurs. 
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In Figure 8.12, the cadmium concentrations at location STOWA1 are plotted together with the water 
quality standard for cadmium, 0.5 µg/l. From this graphical presentation of data, it is easy to see that 
from 1983 up until 1990, almost all measurements were higher than the water quality standard. In 
1996, most measurements are below the standard, but some higher values were recorded.  

For an more exact analysis of the water quality results compared to the standard, use of the 
percentiles or proportion analyses can be made (Sub-section 8.4.1). 
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Figure 8.12: Comparison with Standard, Cadmium at location STOWA1 

8.6 TRENDS 

An important objective of many water quality monitoring programmes is to detect changes or trends in 
the water quality over time. By trend we mean a noticeable change in the measured concentration of 
a water quality parameter, usually over a period of a few years. The purpose may be to see if pollution 
in water is increasing, perhaps due to growth of industry, or to check if the water quality is improving, 
perhaps following new waste water control programmes. 

8.6.1 TYPES OF TRENDS 

Different types of trends exist and are discussed in this and the next chapter: 

linear trend: This is a common type of trend which we want to analyse, showing an increase or 
decrease in a water quality parameter concentration over time (Sub-section 8.6.2).  

• 

step trend:  This type of trend shows a sudden and long-lasting change in the concentration of a 
water quality parameter (Section 8.7). Such a change can come from several reasons: 

• 

- a new industrial effluent in a river (could cause a sudden increase in a pollutant 
concentration);  

- a new wastewater treatment facility (could cause a sudden decrease in a pollutant 
concentration); or  
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- a new procedure in analysis (different laboratory conducting the analysis, new analytical 
method or new equipment being used in a laboratory).  

- The method to test for a step trend is described in Section 8.7, Comparing populations. 
• cycles

 

Some data will show no real trend, but will simply have random variations in measured concentration 
over time.  

8.6.2 ANALYSIS OF A LINEAR TREND 

Seasonality 

The variation added by seasonal or other cycles makes it difficult to detect long-term trends. This 
problem can be solved by: 

• 
• 

removing the cyclic effects before applying other tests to study the trend. 
using a trend test which is unaffected by cycles  

 

For avoiding the complications caused by seasonality in water quality data, we recommend using the 
non-parametric Seasonal Kendall test for analysis of a linear trend. This test is available in HYMOS, 
and is unaffected by seasonality or other cycles. 

Flow correction 

The detection of trends in river water quality is difficult when the concentrations are related to river 
discharge, which is often the case. Some compensation for the flow should therefore be made. One 
method is to convert the concentration values to instantaneous loads (flow × concentration). The trend 
analysis can then be made using the loads and not concentrations. Alternatively, a correction for the 
effect of flow on concentration can be made, comprising several steps: 

3. The residuals can then be checked for trend.  
 

Both methods require that flow data are available at the time of each concentration measurement. 

Correlated data 

Data which are measured within very short time intervals are likely to be correlated, i.e. they are not 
independent of one another. Most statistical tests require uncorrelated (independent) data 
observations. The standard water quality data is most likely uncorrelated, because the sampling 
frequency is not high. 

: This type of ‘trend’ shows a cyclical pattern in the water quality concentration. Cycles may 
be caused by seasonal fluctuations in a natural process or human activity which affects the 
concentration of a particular parameter. Cycles are not real trends because they do not indicate a 
long-term change. Special care must be taken in analysing trends if cycles are present in the data 
(Sub-section 8.6.2, Seasonality) 

Most often in the analysis of trend, we are interested if there is a linear trend, i.e. a slow but steady 
change in the water quality over the period of several years. Assessing if such a trend exists can often 
be difficult, due to a number of complicating factors which are characteristic of water quality data, as 
described briefly below. 

1. The correlation between concentration and flow must be established, with a regression equation 
for the concentration-flow relationship 

2. The residuals of the concentration data are then determined.  
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Trend estimation 
Reference is made to Annex II, Chapter 6, for a description of the linear trend test, where the 
significance of the slope of the trend line is investigated. 
 

Example 8.9 – Linear Trend in HYMOS 

The cadmium concentrations from station STOWA1 (Table A.3) are used to illustrate calculation of a trend 
with linear regression. 

 

Statistical Tests on Data Homogeneity and Randomness 
 ==================================================== 
 
 One Series Test 
 --------------- 
 
 Series code: STOWA 1     QCD 
 
 Date of first element in series= 1983  1 19  0  0 
 Number of data                 =   84 
 
 Test for Significance of Linear Trend 
 ------------------------------------- 
 Intercept parameter     (=b1)    =     1.807 
 Slope parameter         (=b2)    =-.2345E-03 
 St.dev. of b2           (=sb2)   = .3681E-02 
 St.dev. of residual     (=se)    = .8181E+00 
 Test statistic [t]   (abs.value) =      .064 
 Degrees of freedom               =        82 
 Prob(t.le.[t])                   =      .525 
 Hypothesis: H0: Series is random 
             H1: Series is not random 
             A two-tailed test is performed 
             Level of significance is  1.00 percent 
             Critical value for test statistic 2.637 
 Result:     H0 not rejected 

 

Table 8.12: Results of HYMOS calculation on Linear Trend analysis 

The calculated slope is:  m=  - 0.2345E-03 per day 

This slope is tested with the t-statistic at 1% significance. The null hypothesis is not rejected, thus the slope 
is not significant.  

Seasonal Kendall Slope Test 

Application 

The seasonal Kendall test is an ideal test to use for analysing trends in water quality data. It is not 
sensitive to many of the complicating factors typically present. It can be used when seasonal cycles 
are present and may even be used when missing data or tied data are present in the series. The 
validity of the test does not depend on the data being normally distributed (i.e. it is a non-parametric 
test). The test computes both the value and the significance of the trend.  
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For these reasons, the seasonal Kendall slope test is recommended above the more commonly used 
Linear Regression. 

Theory 

The test consists of computing the Mann-Kendall test statistic S and its variance VAR(S), separately 
for each season. These seasonal statistics are then summed, and a Z statistic is computed. The 
normal distribution is used to test for a statistically significant trend. 

The Mann-Kendall statistic S is computed for each season with: 

                     (8.11) ∑ ∑ −=
=1ni ni

ikili )xx(signS
 = +=1k 1kl

where: n =  number of years 

l, k  =  years 

x =  data values 

i =  season number 
 

If xil > xik then the sign  = 1, if xil < xik then the sign = -1 else the sign = 0 

The variance of S is computed for each season as follows: 
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where: gi =  the number of groups of tied data in season i 

tip =  the number of tied data in pth group of season i 

hI =  the number of sampling times in season i that contain multiple data 

uip =  the number of multiple data in the qth time period of season i 
 

When Si and VAR(Si) are computed, they are summed across the K seasons: 
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Finally the Z statistic is computed from: 

             If S’ > 0 
'( )

( )'SVAR

1SZ −
=

Z = 0               If S’ = 0                (8.14) 

               If S’ < 0 
( )

( )'
'

SVAR

1SZ −
=

Data Processing and Analysis January 2003 Page 141 



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III 

HYMOS considers the following hypothesis: 

H0 :  The populations from which the series has been drawn has no trend, 

H1 :  The populations has a trend. 

Together with the seasonal Kendall test, the seasonal Kendall slope estimator is computed. The Ni 
individual slope estimates for the ith season is computed form: 

                     (8.15) l
Q

−
=

k
xx ikil
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−

This is done for each season. The individual slopes are ranked and the median values are computed 
for each season: this is the seasonal Kendall slope estimator N′. A confidence interval around the true 
slope is obtained by using the normal distribution, and: 

 C )S(VARz '
2/1 α−α =

 
 
                     (8.16) C(Mand(M

'' +
=

−
=

2
)N

2
)CN

21
αα

 

The lower and upper confidence limits are the M1
th largest and the (M1+1)th largest values of the N' 

ordered slope estimates. 

References: 

R.O. Gilbert, 1987, Statistical Methods for Environmental Pollution Monitoring, John Wiley & Sons 
Inc.. 

• 

 
Example 8.10 – Seasonal Kendall slope estimate 

The data set of cadmium concentrations at location STOWA1 (Table 8.20) is again used for illustration. We 
have already seen from the plotted data (Figure 8.12) that there seems to be a decreasing trend, based on 
visual inspection of the data. The linear trend estimate also indicated that there is a significant trend.  

The Seasonal Kendall Slope Analysis in HYMOS is applied to the data set, for the season definition which 
can be set by the user. In this example, there are 3 seasons defined (The same seasons as used for the 
seasonal box and whiskers analysis: Summer, monsoon, winter). Results are given in Table 8.13.   
For the defined seasons, the test calculates an overall slope (trend) of -0.00016 per day equivalent to  
 - 0.062 µg Cd/l per year. 

Furthermore, the trend is tested for significance at the 5% level. The trend is found to be significant. 

Data Proc
Statistical Tests on Data Homogeneity and Randomness 
==================================================== 
One Series Test 
--------------- 
Series code : STOWA 1     QCD 
Date of first element in series = 19-01-83 
Number of data                  =  84 
 
Seasonal Kendall Slope Estimator 
---------------------------------------------- 
Number of Seasons               =  3 
 Season 1: 28-02 to 31-05    # data 239   Median slope -.00018  Mann-Kendall Statistic -90 
 Season 2: 31-05 to 01-11    # data 459   Median slope -.00021  Mann-Kendall Statistic -207 
 Season 3: 01-11 to 28-02    # data 357   Median slope -.00008  Mann-Kendall Statistic –31 
Overal Median Slope = -.00016 (per day)
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Data Proc

 T
Seasonal Kendall Slope Test 
---------------------------------------------- 
Season 1: Number of tied values (g) 3 
    Tied Value (t): 1 = 1     measured 2 times 
    Tied Value (t): 2 = 0.5     measured 2 times 
    Tied Value (t): 3 = 1.1     measured 2 times 
Season 2: Number of tied values (g) 5 
    Tied Value (t): 1 = 0.5     measured 3 times 
    Tied Value (t): 2 = 0.6     measured 2 times 
    Tied Value (t): 3 = 0.73     measured 2 times 
    Tied Value (t): 4 = 0.14     measured 2 times 
    Tied Value (t): 5 = 0.31     measured 2 times 
Season 3: Number of tied values (g) 3 
    Tied Value (t): 1 = 1     measured 2 times 
    Tied Value (t): 2 = 0.65     measured 2 times 
    Tied Value (t): 3 = 1.1     measured 3 times 
Season 1: Number of years with multiple data (h) 5 
    Period (u): 1984 has 2 data values 
    Period (u): 1992 has 2 data values 
    Period (u): 1994 has 3 data values 
    Period (u): 1995 has 4 data values 
    Period (u): 1996 has 3 data values 
Season 2: Number of years with multiple data (h) 8 
    Period (u): 1984 has 2 data values 
    Period (u): 1987 has 3 data values 
    Period (u): 1989 has 3 data values 
    Period (u): 1990 has 2 data values 
    Period (u): 1991 has 2 data values 
    Period (u): 1994 has 6 data values 
    Period (u): 1995 has 3 data values 
    Period (u): 1996 has 5 data values 
Season 3: Number of years with multiple data (h) 6 
    Period (u): 1987 has 2 data values 
    Period (u): 1990 has 2 data values 
    Period (u): 1993 has 2 data values 
    Period (u): 1994 has 2 data values 
    Period (u): 1995 has 2 data values 
    Period (u): 1996 has 2 data values 
Season 1: VAR(S) = 1412.833 
Season 2: VAR(S) = 3736.527 
Season 3: VAR(S) = 2550.413 
 
Sum of S      = -328 
Sum of VAR(S) = 7699.772 
 
Lower level at: 441.4893 = -.00028 
Upper level at: 614.5107 = -.00008 
 
Seasonal Kendall Slope Test Result 
---------------------------------------------- 
Calculated Z  test = -3.726566 
Table         test = 1.960395 
 
Hypothesis: H0: The populations have no trend 
                      H1: The populations have a trend 
 
Level of significance is 5 Percent 
-3.726566 < -1.960395 or -3.726566 > 1.960395 

Result: H0 rejected
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8.7 COMPARING POPULATIONS – STEP TREND 

There are some situations where we might expect a sudden change in water quality, for example after 
installation of a new effluent treatment facility or implementation of a new policy measure. In 
evaluating the effect of the new facility or policy measure, one can ask the question: ‘Has the average 
value of a water quality parameter changed as compared to the situation before the facility or policy?’ 
If so, we have what is called a ‘Step Trend’, defined as a sudden change in the average concentration 
of a water quality parameter before and after a specific date (see Figure 8.13).  

Time  S e ries  w ith s tep tre nd

AMS TD AMP LAS  N4 (0/0)
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Figure 8.13: Example of water quality data showing a step trend 

When analysing data for such a trend, we want to check if the average concentration for a period after 
a given date is different from the average concentration before a given date. Two types of tests can 
be done: 

tests on paired data  • 
• tests on independent data 
 

Furthermore, different statistical tests are available for equidistant or non-equidistant data. An 
overview of different tests available for Step-Trend analysis in HYMOS is given below in Table 8.12 
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 Data set Requirements 
Test Paired 

data 
Normally 
distributed 
(parametric) 

Equidistant   other 

1. Student t-test No Yes Non-Equidist. • No seasonal influence 
• Independent values 

2. Wilcoxon-W No No Non-Equidist. - 
3. Wilcoxon – Ranked Sum No No Equidistant • This is non-parametric analog of 

Student’s t-test 
• No seasonal influence 

4. Wilcoxon – Signed Rank Yes No Equidistant Both series same size, same 
frequency 

5. Wilcoxon- Mann Whitney-U No No  Non-Equidist. -- 
6. Student t-test (paired data) 

(Not implemented in HYMOS) 
Yes Yes - No missing values 

Table 8.14: Overview of statistical tests for comparing populations  
(applied for detecting step-trend) 

8.7.1 PAIRED DATA 

By paired data, we mean that two data sets can be linked for some reason such as: 

Samples are collected regularly from 2 locations, upstream and downstream of a pollution source. 
In this case, each sample concentration from upstream can be paired with a concentration from 
downstream. 

• 

• 

• 

Water quality samples are regularly sent to 2 different laboratories for analysis. The 
concentrations measured from Lab 1 can be paired with results from Lab 2, to see if there is any 
difference in results. 
At one location, 3 years of monthly water quality data before installation of a treatment plant are 
compared to 3 years of monthly water quality data after installation of a treatment plant. The data 
series ‘before’ can be paired with the data series ‘after’ (data should be paired month-wise).  

 

The Wilcoxon Signed Rank test is the only statistical test in HYMOS for checking a step trend with 
paired data.   

Wilcoxon Signed Rank Test 

Application  

The Wilcoxon Signed Rank Test can be used instead of the t-test if the data has a symmetric 
distribution (though it does not need to be normally distributed). To perform the Wilcoxon Signed Rank 
test, a series may not contain missing values. The data set in HYMOS must be equidistant. 

Theory 

HYMOS considers the following hypothesis: 

H0:  The populations from which the two series have been drawn have the same mean, 

H1: The populations have different means. 
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The following procedure is followed: 

1. Compute the difference for each pair of values. 
2. Rank the absolute differences, assign rank 1 to the smallest value, rank two to the second 

smallest, .., etc. If several data have the same value, assign them the midrank, that is, the 
average of the ranks that would otherwise be assigned to those data. 

3. Each rank is allocated the sign of the corresponding difference. 
4. Sum the positive ranks, T+, and the absolute value of the negative ranks, T-. 
5. Select the smallest value for T+ and T-. 
6. Compute 
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The ZT statistics under the null-hypothesis is normally distributed. H0 will not be rejected at an α% 
significanace level, if: 

 Z 21T Z α−<

Reference: 

R.O. Gilbert, 1987, Statistical Methods for Environmental Pollution Monitoring, John Wiley & Sons 
Inc.. 

• 

• Gopal K. Kanji, 1999.100 statistical tests. SAGE Publications, Test 48 
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Example 8.11 – Wilcoxon Signed Rank 

Statistical Tests on Data Homogeneity and Randomness 
==================================================== 
 
Two Series Test 
--------------- 
 
Series code 1: Amstdamplas Ros 
Series code 2: Amstdamplas Ros 
 
Date of first element in series = 05-01-1983 
Number of data                  =  36 
 
Wilcoxon Signed Rank Test 
---------------------------------------------- 
Sum of negative ranks     =  0 
Sum of positive ranks     =  666 
Mean                      =  333 
Standard deviation        =  63.65139 
 
Calculated Zb test = -5.231621 
Table         test = 1.960395 
 
Hypothesis: H0: The populations have the same mean 
            H1: The populations have different means 
 
Level of significance is 5 Percent 
 
                                                                                
5.231621 > 1.960395 
Result:      H0 rejected 

Table 8.15: HYMOS results of Wilcoxon Signed Rank Test 

8.7.2 INDEPENDENT DATA 

Several tests exist for independent (non-paired) data to evaluate a step trend. Tests on independent 
data are more easily applied since the data condition of paired data does not exist. Three common 
tests described below are:  

Student t-test • 
• 
• 

Wilcoxon Ranked Sum test 
Wilcoxon W-test  

 

Note: the tests here are presented with the application of analysing the presence of a step trend. The 
same tests can also be used to compare if 2 separate data sets have the same mean value.  

Student t-test. 

Application 

This is the classic test for testing equality of means between two data sets, and thus can be applied 
for analysis of a step trend.  

The data set is split in two parts, on the basis of when a step break is expected, the so-called ‘break-
point’. The test checks if the average value of the two parts of the data set are equal. This test is 
parametric, i.e. assumes a normal distribution of the data. Also the test assumes that the values in 
both parts of the data set are independent. 
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The test is described in Annex II, Chapter 6. 

Test conditions: Total number of data values (N) ≥10, m≥5 and n≥5 

Example 8.12 Student t-test for comparison of means 

T

W

Applicat

The Wilc
sum tes
measure
series. T
distributi
The test 
but the d

Data Proc
Statistical Tests on Data Homogeneity and Randomness 
 ==================================================== 
 
 One Series Test 
 --------------- 
 
 Series code: Amstdamplas N4  
 
 Date of first element in series= 1980 12  3  0  0 
 Number of data                 =  120 
 
 Student t-Test with Welch modification 
 -------------------------------------- 
 Number of data in first set      =        60 
 Number of data in second set     =        60 
 Test statistic [t]  (abs.value)  =    17.929 
 Degrees of freedom               =        83 
 Prob(t.le.[t])                   =     1.000 
 Mean of first set        (mA)    =     2.133 
 St.dev. of first set     (sA)    =      .611 
 Mean of second set       (mB)    =      .576 
 St.dev. of second set    (sB)    =      .283 
 Var. test stat.   (Qi=sA^2/sB^2) =     4.653 
 Prob(Q.le.Qi)                    =     1.000 
 Hypothesis: H0: Series is random 
             H1: Series is not random 
             A two-tailed test is performed 

             Critical value for test statistic 1.989 
 Result:     H0 rejected 

             Level of significance is  5.00 percent 
able 8.16: HYMOS results for Student t-test on comparison of means 

ilcoxon Ranked Sum.  

ion 

oxon Rank Sum Test is a non-parameteric test for independent data sets. The Wilcoxon rank 
t may be used to test for a shift in location between independent series, that is, the 
ments from one series tend to be consistently larger (or smaller) than those from the other 
he rank sum test has the advantage that the two data sets need not to be drawn from normal 
ons, and the test can handle a moderate number of equal values by treating them as ties. 
assumes, however, that the distributions of the two series are identical in shape (variance), 
istributions need not be symmetric.  
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Theory 

HYMOS considers the following hypothesis: 

H0: The populations from which the two series have been drawn have the same mean, 

H1: The populations have different means. 

 

The following procedure is followed: 

1. Combine the two series and rank the m (= n1 + n2) data, assign rank 1 to the smallest value, rank 
two to the next, .., and rank m to the largest value. If several data have the same value, assign 
them the midrank, that is, the average of the ranks that would otherwise be assigned to those 
data. When missing values are encountered the function is stopped. The number of values per 
series must be larger than 10. 

2. Sum the ranks assigned to the first series, Wrs. 
3. If no ties (same values) are present, the test statistic is computed from: 
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          (8.19) 

 

where g is the number of tied groups and tj is the number of tied data in the jth group. 

5. For an α level two-tailed test, H0 is rejected Zrs ≥ z1-α/2  
6. For a one-tailed α level test, with H0 stating that the values from series 1 tend to exceed those 

from series 2, H0 is rejected if Zrs ≥ z1-α . 
7. For a one-tailed α level test with H0 stating that the values from series 2 tend to exceed those 

from series 1, H0 is rejected if Zrs ≤ zα . 
 
This test is almost similar to the Mann-Whitney-U test. 

Reference: 

R.O. Gilbert, 1987, Statistical Methods for Environmental Pollution Monitoring, John Wiley & Sons 
Inc. 

• 
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Wilcoxon W- test  

Application 

With the Wilcoxon W-test difference in the mean value of two series can be investigated. 

Test conditions:  m≥10 and n≥10 

Theory 

The Wilcoxon test considers two series Ai,(i=1,m) and Bi,(i=1,n). All values Ai are compared with all Bj, 
where wi,j is defined by: 

Ai < Bj :    Wi,j = 2 

Ai = Bj :    Wi,j = 1                     (8.20) 

Ai > Bj :    Wi,j = 0 
 
The Wilcoxon statistic W is formed by: 

                     (8.21) ∑∑=
n

j,i
m

WW
== 1j1i

In case µA = µB the W-statistic is asymptotically normally distributed with N(µW,σW): 

µW = mn 

σW
2= mn(N+1)/3                   (8.22) 

where: N = m+n  

 
HYMOS considers the following hypothesis: 

H0 : µA = µB, and 

H1 : µA ≠ µB, hence, a two-tailed test is performed 

 
and the absolute value of the following standardised test statistic is computed: 

u = W - µW/σW 
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Example 8.13 – Wilcoxon W Test for Step trend 

T

 
No

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 

Data Proc
Statistical Tests on Data Homogeneity and Randomness 
 ==================================================== 
 
 
 One Series Test 
 --------------- 
 
 Series code: Amstdamplas N4  
 
 Date of first element in series= 1980 12  3  0  0 
 Number of data                 =  120 
 
 Wilcoxon-Test on Differences in the Mean 
 ---------------------------------------- 
 Number of data in first set      =        60 
 Number of data in second set     =        60 
 W-value                          =    37.000 
 Mean of W                        =  3600.000 
 Standard deviation of W          =   381.051 
 Test statistic [u]  (abs.value)  =     9.350 
 Prob(u.le.[u])                   =     1.000 
 Hypothesis: H0: No difference in the mean of the split samples 
             H1: Split samples have different mean values 
 
             A two-tailed test is performed 
             Level of significance is  5.00 percent 
             Critical value for test statistic 1.960 
 
Result: H0 rejected
able 8.17: HYMOS results of Wilcoxon W test for a step trend (non-paired test) 

. Conc. (mg/l)  No. Conc. (mg/l)
 2.00  29. 4.04 
 2.10  30. 4.04 
 2.90  31. 4.04 
 3.20  32. 4.04 
 3.40  33. 4.06 
 3.43  34. 4.08 
 3.43  35. 4.09 
 3.50  36. 4.17 
 3.50  37. 4.17 
 3.50  38. 4.17 
 3.58  39. 4.23 
 3.58  40. 4.23 
 3.64  41. 4.26 
 3.64  42. 4.29 
 3.69  43. 4.32 
 3.69  44. 4.32 
 3.71  45. 4.33 
 3.74  46. 4.33 
 3.76  47. 4.34 
 3.76  48. 4.44 
 3.81  49. 4.45 
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No. Conc. (mg/l)  No. Conc. (mg/l)
22.  3.83  50. 4.46 
23.  3.91  51. 4.48 
24.  3.91  52. 4.50 
25.  3.95  53. 5.00 
26.  3.97  54. 5.56 
27.  3.99  55. 6.50 
28.  4.03  

 
Table 8.18: Ranked values of Sample Concentrations, sample data for Rosner’s test 
  (after Gilbert, 1987; p.190) 
 

No. Conc. No. Conc. 
1 1.85 24 6.02 
2 2.03 25 6.02 
3 2.26 26 6.35 
4 3.38 27 6.78 
5 3.45 28 7.24 
6 3.81 29 7.47 
7 3.95 30 7.51 
8 3.99 31 7.98 
9 4.10 32 8.43 

10 4.10 33 8.60 
11 4.12 34 9.62 
12 4.29 35 11.20 
13 4.42 36 11.53 
14 4.62 37 12.10 
15 4.74 38 12.30 
16 4.95 39 14.59 
17 5.01 40 14.67 
18 5.04 41 14.83 
19 5.21 42 14.97 
20 5.22 43 15.13 
21 5.36 44 19.00 
22 5.69 45 22.92 
23 5.79 46 23.53 

 
Table 8.19: (Ranked) Data of Nitrate Concentrations at location ‘BasicStat’ 
  (after Gilbert (1987), p.144) 
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   1-3/31-5 1-6/31-10 1-11/28-02

no date value summer monsoon winter 

1 19-01-1983 4.00   4 

2 19-05-1983 1.00 1   

3 14-09-1983 2.00  2  

4 08-12-1983 0.50   0.5 

5 15-03-1984 1.50 1.5   

6 10-05-1984 1.00 1   

7 12-09-1984 2.50  2.5  

8 10-10-1984 4.00  4  

9 16-01-1985 1.50   1.5 

10 15-05-1985 0.50 0.5   

11 14-08-1985 0.50  0.5  

12 06-12-1985 1.00   1 

13 27-01-1986 2.90   2.9 

14 09-04-1986 2.10 2.1   

15 11-08-1986 1.00  1  

16 21-01-1987 1.00   1 

17 25-02-1987 2.20   2.2 

18 21-05-1987 0.50 0.5   

19 22-06-1987 1.70  1.7  

20 17-08-1987 0.60  0.6  

21 21-09-1987 0.50  0.5  

22 17-11-1987 1.70   1.7 

23 13-01-1988 2.79   2.79 

24 18-04-1988 2.60 2.6   

25 12-07-1988 2.20  2.2  

26 13-12-1988 1.30   1.3 

27 16-03-1989 1.70 1.7   

28 02-06-1989 0.67  0.67  

29 10-08-1989 0.73  0.73  

30 06-10-1989 0.84  0.84  

31 21-11-1989 0.65   0.65 

32 07-02-1990 1.60   1.6 

33 21-03-1990 1.10 1.1   

34 07-06-1990 0.75  0.75  

35 16-08-1990 0.35  0.35  

36 09-11-1990 0.38   0.38 

37 11-03-1991 0.95 0.95   

38 11-06-1991 0.69  0.69  

39 02-09-1991 0.10  0.1  

40 04-12-1991 0.40   0.4 

41 25-03-1992 0.97 0.97   

42 21-05-1992 0.80 0.8   

43 11-08-1992 0.42  0.42  

44 10-11-1992 0.65   0.65 

45 02-02-1993 1.80   1.8 

46 11-05-1993 0.83 0.83   

47 03-08-1993 0.13  0.13  

48 23-11-1993 0.59   0.59 
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49 14-01-1994 2.70   2.7 

50 22-02-1994 1.10   1.1 

51 14-03-1994 1.30 1.3   

52 12-04-1994 1.60 1.6   

53 02-05-1994 1.10 1.1   

54 02-06-1994 0.73  0.73  

55 12-07-1994 0.19  0.19  

56 19-08-1994 0.14  0.14  

57 13-09-1994 0.14  0.14  

58 14-09-1994 0.24  0.24  

59 05-10-1994 0.82  0.82  

60 02-11-1994 1.10   1.1 

61 20-12-1994 1.10   1.1 

62 24-01-1995 2.60   2.6 

63 15-02-1995 2.40   2.4 

64 22-03-1995 0.99 0.99   

65 11-04-1995 0.94 0.94   

66 09-05-1995 0.25 0.25   

67 11-05-1995 0.36 0.36   

68 20-06-1995 0.60  0.6  

69 10-08-1995 0.05  0.05  

70 17-10-1995 0.31  0.31  

71 15-11-1995 0.76   0.76 

72 12-12-1995 0.39   0.39 

73 16-01-1996 0.60   0.6 

74 27-02-1996 0.70   0.7 

75 25-03-1996 0.41 0.41   

76 09-04-1996 0.61 0.61   

77 07-05-1996 0.23 0.23   

78 12-06-1996 0.50  0.5  

79 10-07-1996 0.31  0.31  

80 20-08-1996 0.49  0.49  

81 18-09-1996 0.43  0.43  

82 15-10-1996 0.33  0.33  

83 19-11-1996  0.72  0.72 

84 04-12-1996 3.50   3.5 

  mean 1.015 0.780 1.470 

  max. 2.600 4.000 4.000 

  min. 0.230 0.050 0.380 

  median 0.970 0.500 1.100 

  q1 0.555 0.31 0.65 

  q3 1.2 0.7675 2.2 

  n 23 32 29 

Table 8.20: Data of Cadmium concentrations at locations STOWA1 (Neerbeek) original 
  data (value in ug/L) and values sorted according to seasons (India_3Seasons) 
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No. date Conc. No. date Conc. 

1 03/12/80 3.1 61 29/11/85 1.5

2 06/01/81 2.2 62 06/01/86 0.78

3 03/02/81 1.9 63 04/02/86 0.54

4 03/03/81 2.7 64 04/03/86 0.64

5 07/04/81 1.9 65 03/04/86 0.56

6 08/05/81 1.6 66 14/05/86 0.36

7 09/06/81 2.9 67 04/06/86 1.4

8 10/07/81 2.3 68 03/07/86 1.1

9 05/08/81 1.5 69 04/08/86 0.94

10 03/09/81 1.4 70 03/09/86 0.94

11 02/10/81 2.6 71 01/10/86 1.1

12 03/11/81 1.8 72 03/11/86 0.84

13 03/12/81 2.2 73 04/12/86 1

14 05/01/82 2.6 74 05/01/87 0.38

15 02/02/82 3 75 03/02/87 0.28

16 03/03/82 2.5 76 05/03/87 0.38

77 02/04/87 0.32

18 06/05/82 1.4 78 06/05/87 0.18

19 08/06/82 3.3 79 08/06/87 1.1

20 07/07/82 2.6 80 02/07/87 0.92

21 05/08/82 1.7 81 05/08/87 0.5

22 16/09/82 2.7 82 04/09/87 0.62

23 06/10/82 3.6 83 05/10/87 0.58

24 03/11/82 2 84 06/11/87 0.68

25 02/12/82 2.1 85 03/12/87 0.4

26 05/01/83 1.9 86 04/01/88 0.44

27 02/02/83 1.6 87 01/02/88 0.4

28 02/03/83 2.2 88 02/03/88 0.34

29 30/03/83 1.7 89 05/04/88 0.4

30 03/05/83 1.8 90 02/05/88 0.94

31 07/06/83 2.2 91 08/06/88 0.58

32 05/07/83 2.6 92 05/07/88 0.6

33 03/08/83 1.3 93 05/08/88 0.66

34 02/09/83 1 94 05/09/88 0.58

35 05/10/83 2.2 95 06/10/88 0.84

36 02/11/83 1.8 96 02/11/88 0.42

37 02/12/83 1.3 97 01/12/88 0.32

38 04/01/84 1.3 98 30/01/89 0.4

39 03/02/84 2.2 99 27/02/89 0.24

40 02/03/84 1.3 100 30/03/89 0.48

41 04/04/84 1.6 101 28/04/89 0.5

42 04/05/84 1.8 102 31/05/89 0.46

43 05/06/84 1.8 103 29/06/89 0.54

44 05/07/84 1.9 104 03/08/89 0.42

45 03/08/84 1.8 105 30/08/89 0.48

17 31/03/82 2.1 
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No. date Conc. No. date Conc. 

46 06/09/84 1.6 106 28/09/89 0.62

47 02/10/84 1.8 107 30/10/89 0.58

48 02/11/84 1.9 108 30/11/89 0.26

49 06/12/84 2.2 109 21/12/89 0.3

50 03/01/85 2.6 110 29/01/90 0.26

51 01/02/85 2.5 111 21/02/90 0.28

52 01/03/85 2.5 26/03/90112 0.42

53 01/04/85 3.4 113 26/04/90 0.48

54 02/05/85 1.7 114 30/05/90 0.46

55 04/06/85 2.1 115 28/06/90 0.52

56 03/07/85 3.6 116 26/07/90 0.5

57 02/08/85 1.9 117 22/08/90 0.48

58 30/08/85 1.4 118 20/09/90 0.44

59 30/09/85 2.6 119 22/10/90 0.62

60 31/10/85 3.2 120 26/11/90 0.24

*Note:  Data are paired; the data set is divided into 2 halves and data are paired month-wise 

Data nos. n= 1 to 60 are considered the first half of the data set; (3/12/80  to  31/10/85) 

 Data nos. n= 61=120 are the second half (29/11/85  to  26/11/90) 

 Data no. n=1 is paired with n=61 (month 12); n=2 is paired with n=62 (month 1), etc. 

Table 8.21: (Paired)* data of phosphorus concentrations at location Amstdamplas 

9 REPORTING ON RAINFALL DATA  

9.1 GENERAL 

Published reports are the primary visible output of the Hydrological Information System. They have 
several purposes 

to provide information on availability of data for use in planning and design. Rainfall data are used 
for a variety of purposes and are required at a range of time scales. Real time rainfall data are 
required for flood forecasting and hydropower and reservoir operation. Summaries of storm 
rainfall event data are required for assessment of the severity of events at weekly or monthly time 
scales. Rainfall bulletins for agricultural and irrigation operation are needed at similar time scales. 
However, the HIS will data at yearly or longer reporting frequency and will not engage in shorter 
term operation reports. Although the same data may be used for such reports they will not be the 
direct concern of the HIS. 

• 

• 

• 

to advertise the work of the HIS and its capability and to create interest and awareness amongst 
potential users.With the availability of data on magnetic media it is conceivable that all requests 
for data could be met by a direct and specific response to data requests.  This in fact is now the 
practice in many developed countries where there are well established links between data users 
and data suppliers and annual reports are no longer published in print (although the same 
information may be provided on the Internet). In India, the availability of rainfall data may not be 
well known even in related government departments; the annual report of rainfall therefore 
provides a suitable means of demonstrating the capability of the HIS. 
to provide feedback to data producers and acknowledge the contribution of observers and co-
operating agencies. The HIS is an integrated system in which rainfall (and other) data are 
transferred by stages from the field, to local and regional offices for data entry, processing and 
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validation. The annual report shows how observations at individual stations are integrated in the 
network. It provides an encouragement to observers and data processors to ensure that the raw 
and processed data are reliable. 

The HIS provides opportunities for storage, retrieval and reporting on magnetic media and there is 
now no necessity to publish daily rainfall for all contributing stations. The traditional annual report of 
daily rainfall is often not the most convenient format of rainfall data for users. For project or design 
purposes, the user often requires long term records for a single station or a group of stations - i.e., 
data by station rather than by year. This required the collation of data from a set of annual reports and 
the keying of the data into the computer for the required analysis. So long as the annual report gives a 
clear indication of data availability as a basis for user requests, it is now more efficient and cost 
effective to provide rainfall summary statistics rather than the full daily record.  

The HIS thus makes data reporting and use more efficient by: 

reducing the amount of published data and cost of annual reports • 
• 

• 

• 
• 

providing statistical summaries in tabular and graphical from which are more accessible and 
interesting to the user 
avoiding duplication of effort by users in keying in of data by provision on magnetic media 

 

Annual reports are produced with respect to rainfall over the hydrological year from 1 June to 31 May. 
Since the hydrological year corresponds to a complete cycle of replenishment and depletion, it is 
appropriate to report on that basis rather than with respect to the calendar year. Such reports 
incorporate   

a summary of information on the pattern of rainfall over the year in question 
information on the long-term spatial and temporal pattern of rainfall in the region and how the 
recent year compares with past statistics. 
 

Reports of long term statistics of rainfall will be prepared and published at 5 or 10 years intervals. 
These will incorporate spatial as well as temporal analysis. 

Annual and other reports will be produced at the State Data Processing centre. Annual reports will be 
produced in draft form within six months from the end of the year covered by the publication and the 
report published within twelve months. 

9.2 YEARLY REPORTS 

The annual report provides a summary of the rainfall pattern for the report year in terms of distribution 
of rainfall in time and space and makes comparisons with long term statistics. Details of the 
observational network and data availability are included. A summary of the hydrological impact of 
rainfall is provided with particular reference to floods and droughts. The following are typical contents 
of the annual report: 

(a) Introduction 
(b) The Observational Network 

− maps 
− listings 

(c) A descriptive account of rainfall occurrence during the report year 
(d) Thematic maps of monthly, seasonal and annual rainfall 
(e) Graphical and mapped comparisons with average patterns 
(f) Basic rainfall statistics 
(g) Description and statistical summaries of major storms 
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(h) Data validation and quality 
(i) Bibliography 
 

9.2.1 INTRODUCTION 

The report introduction, which may change little from year to year, will describe the administrative 
organisation of the rainfall network and the steps involved in the collection, data entry, processing, 
validation, analysis and storage of data. It will list those agencies contributing to the included data. It 
will describe how the work is linked with other agencies collecting or using rainfall data including the 
India Meteorological Department and operational departments in hydropower and irrigation. It will 
describe how additional data may be requested and under what terms and conditions they are 
supplied. 

9.2.2 THE OBSERVATIONAL NETWORK 

The salient features of the observational network are summarised in map and tabular form.  

The rainfall station map must also show major rivers and basin boundaries and distinguish each site 
by symbol between daily, autographic and digital recorder and whether rainfall alone is observed or 
the gauge is sited at a climatological station.  

Tabulations of current stations are listed by named basin and sub-basin. Also listed are latitude, 
longitude, altitude, responsible agency, the full period of observational record and the period of 
observation which is available in digital format. A similar listing of closed stations, (or a selection of 
closed stations with long records) may be provided. All additions and closures of stations must be 
highlighted in the yearly report.  Similarly station upgrading and the nature of the upgrading should be 
reported. 

9.2.3 DESCRIPTIVE ACCOUNT OF RAINFALL DURING THE REPORT YEAR. 

An account of the rainfall occurrence in the region in the year can be concisely given in the form of a 
commentary for each month, placed in its meteorological context. Significant stretches of dry or wet 
periods in the parts of the region under reporting can be highlighted. 

9.2.4 MAPS OF MONTHLY, SEASONAL AND YEARLY AREAL RAINFALL  

Thematic maps showing spatial distribution of average rainfall over the region for monthly, seasonal 
or yearly periods provide a convenient summary of the rainfall pattern in space and time. Basin or 
administrative boundaries may also be shown to illustrate variations between districts or basins.  The 
rainfall may be mapped as the actual value at each station for the specified period or by the drawing 
of isohyets of equal rainfall over the region. For such interpolations the rainfall is first interpolated on a 
very fine grid laid over the region using manual or computer-based techniques. Grid point values are 
then used to draw isohyets at suitable intervals. 

9.2.5 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 

Maps will also be provided to show relative rainfall - the amount as a percentage of the long term 
average. The period over which the long term average is taken must be noted. 

For a few representative rainfall stations, a graphical comparison of the monthly rainfall amounts for 
the whole year can be made with the long term average patterns. The actual monthly distribution can 
be plotted against the long term average for minimum, maximum and average monthly amounts. This 
kind of plot also makes it easy to comprehend the type of temporal distribution of rainfall. 
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9.2.6 BASIC STATISTICS FOR VARIOUS DURATION 

This forms the core of the report. As noted above the full reporting of daily or hourly data is no longer 
required though sample tabulations of daily and hourly data may be provided for selected stations to 
illustrate the format of information available. Instead, summary statistics of monthly rainfall for the 
report year provide a ready means of making comparisons between stations and between months and 
will satisfy the needs of general data users. 

Again stations are listed by basin and sub-basin order (rather than alphabetical or numerical order). In 
addition to monthly rainfall totals, the maximum daily amount in the year and the date of its 
occurrence is noted. Any daily, monthly or annual totals which exceed previous maxima of record  are 
shown in bold type. 

For stations with digital or autographic records a similar tabulation is provided by basin giving the 
maximum observed amount for selected durations including 1 hour, 2, 3, 6, 12 and 24 hours with 
dates of occurrence. 

9.2.7 DESCRIPTION AND STATISTICAL SUMMARIES OF MAJOR STORMS 

Storms should be described with respect to their meteorological context, centre of concentration, 
movement across the river basins and also the characteristics of the time distribution of rainfall within 
the storm. 

Special summary reports of rainfall statistics produced by the HIS or other agencies. 
 

Major storms which are known to have had an impact on flooding or operation of water resources are 
described in more detail. Selection of events for description may be made in terms of impact or on an 
objective basis of areal amount and distribution. For rainfall regimes of arid and semi-arid regions a 
lower value is adopted whereas for high rainfall regimes a higher threshold value is adopted. Usually, 
a threshold of about 10% of the seasonal normal rainfall may be taken for the most frequent storm 
duration over the region. The threshold value also depends upon the size of the catchment area. For 
smaller catchment a higher threshold and for larger catchments smaller threshold value may be 
adopted. An average precipitation depth of 50 mm per day over a catchment of medium size (say 
10,000 – 15,000 sq. kms.) would be appropriate. The peripheral isohyet for one day storm must be at 
least 50 mm in the moderate rainfall regime whereas it must be about 10 to 20 mm for arid or semi-
arid regions with low seasonal rainfall. 

9.2.8 DATA VALIDATION AND QUALITY  

The limitations of data should be made known to users. The validation process not only provides a 
means of checking the quality of the raw data but also a means of reporting. The number of values 
corrected or in-filled as a total or a percentage may be noted for individual stations, by basin or by 
agency. The types of anomaly typically detected by data validation and remedial actions should be 
described. 

9.2.9 BIBLIOGRAPHY 

Data users may be interested to know of other sources of rainfall data or of related climatic or 
hydrological data. The following should be included. 

Concurrent annual reports from the HIS of climate or hydrological data 
Previous annual rainfall reports (with dates) from the HIS. 
Previous annual rainfall reports (with dates) published by each agency and division within the state 
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A brief note on the administrative context of previous reports, methods of data compilation, and 
previous report formats would be helpful. 

Long term point and areal statistics are important for planning, management and design of water 
resources systems. They also play an important role in validation and analysis. These statistics must 
be updated regularly and an interval of 10 years is recommended. The following will be typical 
contents of such reports.  

• Introduction 
• Data availability - maps and tabulations 
• 
• Thematic maps of mean monthly and seasonal rainfall 
• Basic rainfall statistics - monthly and annual means, maxima and minima 

− for the standard climatic normal period (1961-90) where available 

− for the available period of record 
• Additional point rainfall statistics for example, daily maximum rainfall, persistence of dry or wet 

spells during the monsoon, dates of onset or termination of the monsoon. 
• Additional areal mean rainfall statistics for administrative or drainage areas for periods of a month 

or year 
• 

• Frequency analysis of rainfall data 

9.3.1 FREQUENCY ANALYSIS OF RAINFALL DATA 

The frequency of occurrence of rainfall of various magnitudes is important in the application of 
mathematical models for synthesising hydrological data. Estimates of design runoff from small areas 
are often based on rainfall-runoff relations and rainfall frequency data due to sparse streamflow 
measurements and limitation in transposing such data among small areas. Generalised estimates of 
rainfall frequencies for a few durations up to 72 hours and up to a few hundred years are useful if are 
readily available. Some such maps are available at country level for specified duration of rainfall and 
frequency of occurrence (or return periods). These maps must be revised after having collected a 
significant amount of additional data. Standard methods recommended by India Meteorological 
Department must be followed for the derivation of such maps. Though the primary responsibility for 
making such maps lies with the India Meteorological Department, it is appropriate to include such 
maps in the reports with the permission of the IMD. 

9.4 PERIODIC REPORTS ON UNUSUAL RAINFALL EVENTS 

• 

9.3 PERIODIC REPORTS - LONG TERM STATISTICS 

Descriptive account of annual rainfall since last report 

− for the updated decade 

Analysis of temporal variability using moving averages or residual mass curves to identify major 
wet and dry periods for a number of representative stations. 

Information on rainfall frequency is a vital input for planning domestic or industrial water supply, 
agricultural planning, hydropower and other water use sectors. Inferences on various time intervals 
such as daily, weekly, ten-daily, fortnightly and monthly are usually required for planning in various 
sectors. 

Special reports should also be prepared on the occurrence of unusual rainfall events. As these will 
also have unusual hydrological consequences, the reports will normally be combined with reports of 
the resulting streamflow and flooding within the affected area. The rainfall component of such reports 
will include the following  

tabulations of hourly or daily point rainfall within the affected area 
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• 
• hyetograph plots of rainfall time distribution based on recording raingauges 
• assessment of event return periods for selected durations based on point rainfall 
• areal storm rainfall totals over affected basins 

10 REPORTING ON CLIMATIC DATA 

10.1 GENERAL 

Published reports are the primary visible output of the Hydrological Information System. They have 
several purposes 

• 

• to advertise the work of the HIS and its capability and to create interest and awareness amongst 
potential users. 

• to provide tangible evidence to policy makers of a return on substantial public investment. 
• to provide feedback to data producers and acknowledge the contribution of observers and co-

operating agencies. The HIS is an integrated system in which evaporation (and other) data are 
transferred by stages from the field, to local and regional offices for data entry, processing and 
validation. The annual report shows how observations at individual stations are integrated in the 
network. It provides an encouragement to observers and data processors to ensure that the raw 
and processed data are reliable. 

• 

The HIS provides opportunities for storage, retrieval and reporting on magnetic media and there is 
now no necessity to publish daily records for all contributing stations. Reports are primarily designed 
to cover a fixed time interval, most commonly the water year. In contrast users most commonly 
require data as full time series from the beginning to the end of the record. there is thus a degree of 
incompatibility between user requirements and reporting formats. It is not possible to provide 
complete records in report form, though these can conveniently be provided on magnetic media from 
the HIS. The main function of the report therefore with respect to functional use is to inform users of 
the availability of data in digital and other formats. 

Annual reports are produced with respect to evaporation over the hydrological year from 1 June to 31 
May. They will generally be combined with annual rainfall reports and may be combined with 
streamflow. 

A broad range of climatic variables is measured at observation station but, for hydrological purposes, 
the variables are not themselves of direct interest but are used in computing evapotranspiration by 
theoretical and empirical methods - especially the Penman method. Whilst computed 
evapotranspiration will be reported, the statistics of climatic variables used in the computation are not 
required for reporting. Direct measurements of pan evaporation will be included in the report. 

The annual report provides a summary of evaporation for the report year in terms of distribution in 
time and space. It also makes comparisons with long term statistics. Details of the observational 
network and data availability are included. The following are typical contents of the annual report: 

• Introduction 
• The Observational Network 

isohyetal maps of total storm rainfall 

 

to provide information for use in planning, design, operation and evaluation. Evaporation and 
evapotranspiration data are used for irrigation scheme design, operation and evaluation, for 
agricultural operations and in flood forecasting models. 

to provide a clear incentive to keep archives up to date and a focus for an annual hydrometric 
audit 

10.2 YEARLY REPORTS 
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− maps 
− listings 

• Basic evaporation statistics 
• Annual summaries in graphical form 

The report will list those agencies contributing to the included data. It will describe how the work is 
linked with other agencies collecting or using evaporation data including the India Meteorology 
Department and operational departments in hydropower and irrigation. It will describe how additional 
data may be requested and under what terms and conditions they are supplied. 

10.2.2 THE OBSERVATIONAL NETWORK 

• 

− monthly and annual Penman evapotranspiration 

• Data validation and quality 
• Bibliography 

10.2.1 INTRODUCTION 

The report introduction, which may change little from year to year, will describe the administrative 
organisation of the climate and evaporation network and the steps involved in the collection, data 
entry, processing, validation, analysis and storage of data. Standard climatic observational practice for 
variables required by computation of Penman evapotranspiration will be summarised.  

The salient features of the observational network are summarised in map and tabular form.  

The map of climate stations must also show major rivers and basin boundaries and distinguish each 
site by symbol between the combination of instruments in use at each station (e.g. automatic weather 
stations, stations with net radiometer, etc.). Mapped stations must be numbered so that they can be 
related to information contained in tabular listings. 

Tabulations of current stations are listed by named basin and sub-basin. Also listed are latitude, 
longitude, altitude, responsible agency, the full period of observational record and the period of 
observation which is available in digital format. A similar listing of closed stations may be provided. All 
additions and closures of stations must be highlighted in the yearly report.  Similarly station upgrading 
and the nature of the upgrading should be reported. 

10.2.3 BASIC EVAPORATION STATISTICS 

This forms the core of the report. As noted above the full reporting of daily data is no longer required 
and the principal output will be monthly statistics of evaporation for each station compared with the 
average for the period of record. Stations will be ordered by basin and sub-basin - rather than in 
alphabetical order. Fig. 1 provides an example of such a listing. A typical listing includes: 

For the current year 
− monthly and annual pan evaporation 

 
• For the previous record 

− mean monthly and annual pan evapotranspiration 
− lowest monthly mean in period 
− highest monthly mean in period 
− various percentile values 
− mean monthly and annual Penman evapotranspiration 
− lowest monthly mean in period 
− highest monthly mean in period 
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− various percentile values 
 

• For the station 
− location details and station elevation  
 

Values of evaporation, whether from pan measurements or derived from Penman calculations should 
be reported to no more than one decimal place (mm). More than one decimal place is beyond the 
accuracy of measurement and gives a spurious impression of accuracy. 

10.2.4 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 

Graphical displays often provide the best and most accessible means of illustrating the time series of 
evaporation during the water year and how this relates to the previous record. The following graphical 
plots will be presented for a selection of stations. 

Annual histogram plot of monthly evaporation compared with previous mean, maxima and minima • 
• 

• 
• 
• 

• 

Map showing annual or seasonal evaporation as a percentage of the long period average. 
 

10.2.5 DATA VALIDATION AND QUALITY 

The limitations of the data should be made clear to users. The general limitations of pan evaporation 
as a measure of open water evaporation should be explained (primarily the difference in heat storage 
properties of a small metal container and an extensive natural open water surface). In addition, the 
number of values corrected or infilled as a total or a percentage may be noted for individual stations, 
by basin or by agency. 

10.2.6 BIBLIOGRAPHY 

Data users may be interested to know of other sources of evaporation and related climatic and rainfall 
and streamflow data. The following should be included. 

Concurrent annual reports from the HIS of rainfall or streamflow data 
Previous annual reports incorporating climate and evaporation data (with dates) from the HIS. 
Previous annual reports incorporating climate and evaporation data(with dates) published by each 
agency and division within the state 
Special summary reports of climate and evaporation statistics produced by the HIS or other 
agencies. 

 

A brief note on the administrative context of previous reports, methods of data compilation, and 
previous report formats would be helpful. 

10.3 PERIODIC REPORTS - LONG TERM STATISTICS 

Long term point and areal statistics are important for planning, management and design of water 
resources systems. They also play an important role in validation and analysis. These statistics must 
be updated regularly and an interval of 10 years is recommended. The following will be typical 
contents of such reports.  

• Introduction 
• Data availability - maps and tabulations 
• Descriptive account of annual measured pan evaporation and computed evapotranspiration since 

the last report 
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• Thematic maps of mean monthly and seasonal evaporation 
• Basic evaporation statistics - monthly and annual means, various percentiles, maxima and 

minima 
− for a standard climatic normal period where available 
− for the updated decade 
− for the available period of record 

Analysis of periodicity and trend in the evaporation data 
 

11 REPORTING ON STAGE DISCHARGE DATA  

11.1 GENERAL 

Published reports are the primary visible output of the Hydrological Information System. The 
principal reports will be with respect rainfall, climate and streamflow and will cover the water year 
(from 1 June to 31 May). A limited amount of stage discharge data will be incorporated with 
reports on streamflow. Reports have several purposes 

• 

− to provide information for use in planning and design. Stage discharge data are not directly 
used, but they can provide an indication of the reliability of derived streamflow data. Sufficient 
information should be provided for this purpose. 

− to advertise the work of the HIS and its capability and to create interest and awareness 
amongst potential users..  

− to provide feedback to data producers and acknowledge the contribution of observers and co-
operating agencies. The HIS is an integrated system in which data are transferred by stages 
from the field, to local and regional offices for data entry, processing and validation. The 
annual report shows how observations at individual stations are integrated in the network. It 
provides an encouragement to observers and data processors to ensure that the raw and 
processed data are reliable. 

The HIS provides opportunities for storage, retrieval and reporting on magnetic media and there is 
now no necessity to publish all available data from contributing stations. There is no necessity to 
report on every discharge observation made during the year. The parameters of individual stage 
discharge relationships also need not be reported but must be available on request to users along 
with time series of discharge. 

11.2 LAYOUT OF REPORT  

The following table of summary information for each station is recommended as a guide to gauging 
effort and the reliability of the ratings: 

 Current year Previous record 
 Level Flow Level Flow 

Maximum observed      
Maximum gauged      
Minimum observed     
Minimum gauged     

 
Number of gaugings in the year 
Number of ratings in the year 
Overall standard error of rating (1) 
Overall standard error of rating (2) 
Overall standard error of rating (3) 
Last date of change of rating 
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12 REPORTING ON DISCHARGE DATA 

12.1 GENERAL 

Published reports are the primary visible output of the Hydrological Information System. They have 
several purposes 

to provide information for use in planning, design, operation and evaluation. The list of potential 
users of streamflow data is very large. Data are used for: 

• 

• 

• 
• 

• 

• 
• 

• 

− for the design of water resources schemes taking into consideration particularly the risk of 
drought 

− for flood defence and drainage schemes taking into account the risk of flood discharges 
− for control of water quality considering the volumes of water available for dilution of industrial 

and domestic effluents 
− for water issues related to fisheries, ecology, recreation and navigation 
− for all the above with respect to education, research, policy making at state, inter-state and 

international levels. 
to advertise the work of the HIS and its capability and to create interest and awareness amongst 
potential users.. With the availability of data on magnetic media it is conceivable that all requests 
for data could be met by a direct and specific response to data requests.  This in fact is now the 
practice in many developed countries where there are well established links between data users 
and data suppliers and annual reports are no longer published in print (although the same 
information may be provided on the Internet). In India, the availability of streamflow data may not 
be well known even in related government departments; the annual report of streamflow therefore 
provides a suitable means of demonstrating the capability of the HIS. 

to provide tangible evidence to policy makers of a return on substantial public investment 
to provide feedback to data producers and acknowledge the contribution of observers and co-
operating agencies. The HIS is an integrated system in which streamflow (and other) data are 
transferred by stages from the field, to local and regional offices for data entry, processing and 
validation. The annual report shows how observations at individual stations are integrated in the 
network. It provides an encouragement to observers and data processors to ensure that the raw 
and processed data are reliable. 
to provide a clear incentive to keep archives up to date and a focus for an annual hydrometric 
audit 
 

The HIS provides opportunities for storage, retrieval and reporting on magnetic media and there is 
now no necessity to publish daily flow records for all contributing stations. Reports are primarily 
designed to cover a fixed time interval, most commonly the water year. In contrast users most 
commonly require data as full time series from the beginning to the end of the record. there is thus a 
degree of incompatibility between user requirements and reporting formats. It is not possible to 
provide complete records in report form, though these can conveniently be provided on magnetic 
media from the HIS. The main function of the report therefore with respect to functional use is to 
inform users of the availability of data in digital and other formats. 

The HIS thus makes data reporting and use more efficient by: 

reducing the amount of published data and cost of annual reports 
providing statistical summaries in tabular and graphical form which are more accessible and 
interesting to the user 
avoiding duplication of effort by users in keying in of data by provision on magnetic media 
 

Annual reports are produced with respect to streamflow over the hydrological year from 1 June to 31 
May. Since the hydrological year corresponds to a complete cycle of replenishment and depletion, it is 
appropriate to report on that basis rather than with respect to the calendar year. Such reports 
incorporate   
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• 
• 

• 
• 

a summary of information on the pattern of streamflow over the year in question 
information on the spatial and temporal pattern of streamflow in the region and how the recent 
year compares with past statistics. 
 

Reports of long term statistics of streamflow will be prepared and published at 5 or 10 year intervals. 
These will incorporate spatial as well as temporal analysis. 

Annual and other reports will be produced at the State Data Processing Centre. Annual reports will be 
produced in draft form within six months from the end of the year covered by the publication and the 
report published within twelve months. Annual streamflow, rainfall and climate data may be presented 
in a single combined report.  

12.2 YEARLY REPORTS 

The annual report provides a summary of streamflow for the report year in terms of distribution in time 
and space. It also makes comparisons with long term statistics. Details of the observational network 
and data availability are included. The following are typical contents of the annual report: 

Introduction 
The Observational Network 
− maps 
− listings 

• A descriptive account of streamflow occurrence during the report year 
• Basic streamflow statistics 
• Annual summaries in graphical form 
• Description and statistical summaries of major floods and droughts 
• Data validation and quality 
• Bibliography 

12.2.1 INTRODUCTION 

The report introduction, which may change little from year to year, will describe the administrative 
organisation of the streamflow network and the steps involved in the collection, data entry, 
processing, validation, analysis and storage of data. It will list those agencies contributing to the 
included data. It will describe how the work is linked with other agencies collecting or using streamflow 
data including the Central Water Commission and operational departments in hydropower and 
irrigation. It will describe how additional data may be requested and under what terms and conditions 
they are supplied. 

12.2.2 THE OBSERVATIONAL NETWORK 

The salient features of the observational network are summarised in map and tabular form.  

The map of gauging stations must also show major rivers and basin boundaries and distinguish each 
site by symbol between operating agency. Mapped stations must be numbered so that they can be 
related to information contained in tabular listings (Fig. 1). 

Tabulations of current stations are listed by named basin and sub-basin. Also listed are latitude, 
longitude, altitude, responsible agency, the full period of observational record and the period of 
observation which is available in digital format. A similar listing of closed stations may be provided. All 
additions and closures of stations must be highlighted in the yearly report.  Similarly station upgrading 
and the nature of the upgrading should be reported. 
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12.2.3 DESCRIPTIVE ACCOUNT OF STREAMFLOW DURING THE REPORT YEAR. 

An account of streamflow occurrence in the region in the year can be concisely given in the form of a 
commentary for each month, placed in its meteorological context and in relation to the seasonal 
norms. Especially severe or prolonged periods of high or low flows can be highlighted. 

12.2.4 BASIC STREAMFLOW STATISTICS 

This forms the core of the report. As noted above the full reporting of daily or hourly data for all 
stations is no longer required. However for selected major stations a full listing of daily flows will be 
provided with accompanying statistical information relating to the year in question and with respect to 
comparisons with the previous gauged record. Stations will be ordered by basin and sub-basin - 
rather than in alphabetical order. Such a listing includes: 

For the current year • 
− the tabulation of daily mean flow for the year 
− the mean, maximum and minimum daily mean flow in each month 
− monthly flows against the frequency curves for different frequencies 
− the maximum instantaneous (peak) flow in each month 
− monthly flow volumes, runoff (mm) and basin rainfall (mm) 
− annual summary statistics 
 

• For the previous record 
− average of monthly means, lowest monthly mean (and year) and highest (and year) 
− annual summary statistics 
 

• For the basin 
− location details, station elevation and catchment area 
− summary description of the gauging station, its controls and limitations 
− summary description of the catchment including principal  features of geology and land use 
− summary of artificial factors affecting flow, reservoirs and regulation, abstractions and return 

flows. 

For the remaining stations, abbreviated summary statistics are provided. Fig. 3 provides an example 
which includes: 

• For the current year 
− monthly and annual mean flows 
− monthly and annual maximum flows 
− monthly and annual runoff (mm) 
− monthly and annual basin rainfall 
 

• For the previous record 
− Monthly and annual mean flows 
− Lowest monthly mean in period 
− highest monthly mean in period 
− highest monthly instantaneous flow 
− mean monthly runoff (mm) 
− mean monthly and annual basin rainfall 
 

• For the basin 
− location details, station elevation and catchment area 
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Values of flow, whether, observed, mean daily or mean monthly should be reported to two decimal 
places or less. More than two decimal places is beyond the accuracy of measurement and gives a 
spurious impression of accuracy. 

12.2.5 GRAPHICAL AND MAPPED COMPARISONS WITH AVERAGE PATTERNS 

Graphical displays often provide the best and most accessible means of illustrating the time series of 
flow during the water year and how this relates to the previous record. The following graphical plots 
will be presented for a selection of stations. 

• 
• 
• 

The limitations of the data should be made clear to users. The accuracy of flow data are dependent 
primarily on the accuracy of the stage record and on the. the reliability of the stage discharge 
relationship. With respect to stage the number of values corrected or infilled as a total or a percentage 
may be noted for individual stations, by basin or by agency. With respect to the reliability of the stage 
discharge relationship, the number of gaugings in the period and the extent to which the gauging 
range falls short of the observed range should be reported. A list of reportable quantities is provided in 
Chapter 10. 

• 
• 
• 

• 

Annual hydrograph plot compared with previous maxima and minima. 
Flow duration curve showing comparison of current year with long term curve. 
Map showing annual runoff as a percentage of the long period average. Note that this is a very 
generalised map since the value at a gauging station represents an average value over a basin 
whilst the runoff from different sub-catchments may be quite different in relation to the period 
norms. 

 

12.2.6 DESCRIPTION AND STATISTICAL SUMMARIES OF MAJOR FLOODS AND DROUGHTS 

Major floods which have caused loss of life or serious or widespread damage to property are 
described in more detail giving details of peak flow and average flow over selected durations for 
stations within the affected area, and showing how these statistics differ from the previous reported 
maxima Storms should be described with respect to their meteorological context, the most severely 
affected areas, and the impact of storm movement across the basin on the resulting flood. The 
description may be combined with the rainfall report for the storm (Module 13). 

Similarly major droughts which have caused serious agricultural impacts or disruption of water supply 
should be illustrated by comparison of drought flow hydrographs compared with average and previous 
minima of experience. 

12.2.7 DATA VALIDATION AND QUALITY  

12.2.8 BIBLIOGRAPHY 

Data users may be interested to know of other sources of streamflow and related climatic and rainfall 
data. The following should be included. 

Concurrent annual reports from the HIS of rainfall or climate data 
Previous annual streamflow reports (with dates) from the HIS. 
Previous annual streamflow reports (with dates) published by each agency and division within the 
state 
Special summary reports of streamflow statistics produced by the HIS or other agencies. 

 

A brief note on the administrative context of previous reports, methods of data compilation, and 
previous report formats would be helpful. 
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12.3 PERIODIC REPORTS - LONG TERM STATISTICS 

Long term point and areal statistics are important for planning, management and design of water 
resources systems. They also play an important role in validation and analysis. These statistics must 
be updated regularly and an interval of 10 years is recommended. The following will be typical 
contents of such reports.  

• 
• 
• 
• 
• 

• 

• 
• 

� Monitoring and processing  

• 

• 
• 

Introduction 
Data availability - maps and tabulations 
Descriptive account of annual streamflow and runoff since last report 
Thematic maps of mean monthly and seasonal runoff 
Basic streamflow statistics - monthly and annual means, maxima and minima 
− for the standard climatic normal period (1961-90) where available 
− for the updated decade 
− for the available period of record 
Analysis of periodicities and trend in the streamflow data 

 

13 REPORTING ON SEDIMENT TRANSPORT 

13.1 GENERAL 

The general statements made in Section 12.1 for discharge data are also valid for sediment transport 
data, hence reference is made to this section. 

13.2 YEARLY REPORTS 

13.2.1 GENERAL 

The annual report provides a summary of sediment loads for the report year in terms of distribution 
and time. It also makes comparisons with long term statistics. Details of the observational network 
and data availability are included. The following are typical contents of the annual report with respect 
to sediment transport: 

Introduction 
Observational network for sediment sampling 
� Network layout and adaptations in report year 

� Data collection in report year 
Sediment transport 
� Sediment loads in the report year 
� Sediment loads in comparison to the historical records 
Trends in sediment loads 
Interpretation of various statistics presented in the yearbook on sediment transport 

 

13.2.2 OBSERVATIONAL NETWORK  

The standards for presentation of network particulars in tables and graphs should be in line with those 
used for stream flow. With respect to sediment sampling the monitoring procedures and equipment 
used are important pieces of information to interpret the sediment loads to be presented in the 
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yearbook. Hence due attention is to be given in the yearbook on these aspects, particularly when 
changes have taken place in the procedures and equipment. 

Also a clear picture should be sketched of the site conditions and sediment sources. Existence of 
bank erosion and mining of the river bed upstream of the measuring site, and topographical and land 
use practices are to be mentioned.  

Next, the validation and applied computational procedures used for arriving at the load values for 
different time intervals (ten-daily, monthly and annually) is to be outlined.  

13.2.3 SEDIMENT LOADS  

Ten-daily, monthly and annual total suspended sediment loads (in tonnes) for selected stations are 
presented in the yearbook and for all stations the annual loads are shown. It is noted that the 
presented data should be based on S-Q relationships derived for the station and valid for that 
particular year or part of the year. To show the contributions of the coarse, medium and fine fractions 
to the total load the individual ten-daily, monthly and annual loads or average concentrations (in mg/L 
or g/L, whichever is appropriate) may also be given, when required. 

To show the sediment loads for the current year, in relation with the historical data, the current year is 
displayed in frequency curves derived from the historical record, based on 10-daily values. 

13.2.4 TRENDS  

When records of sufficient length are available the long term development of loads/ concentrations for 
the hydrological year and for the seasons separately could be shown. To the data, information should 
be presented on possible causes of changes in the S-Q relationships if apparent. In this respect not 
only land use, bank erosion or mining of the river bed should be mentioned, but also possible effects 
of changed measuring equipment and/or practices. The latter may be important when investigations 
show that historical measuring practice (single point measurement in the vertical) has led to biased 
results. 

14 REPORTING ON WATER QUALITY DATA 

14.1 INTRODUCTION 

Regular reporting on water quality data is expected to take place in the form of an annual yearbook. A 
yearbook is already made by CWC, and in the future can also be made by the State Surface Water 
organisations.  

The water quality yearbook may be an independent report (e.g. CWC Water Quality Yearbook) or it 
may be clubbed together with reporting on hydrology and meteorological conditions to create one 
overall Surface Water Yearbook. If the water quality is clubbed together with hydrology, the reporting 
may be done for hydrological years (June – May) as opposed to calendar years (January – 
December). 

14.2 GOALS OF WATER QUALITY MONITORING  

It has been repeatedly stated that monitoring is a series of steps which follow one another in what is 
called the ‘Monitoring Cycle’. The cycle begins with the identification of information needs about water 
quality and, if all goes well, ends with the production of the requested information. This principle is 
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presented in Figure 14.1 and is discussed in detail in Volume 6 of the Design Manual (Water Quality 
Sampling). 

Because the yearbook is one of the information products of water quality monitoring, it is important 
that the design and content of the yearbook should respond to the specified information needs and 
identified goals of water quality monitoring. 

 
1 Water management

6 Laboratory analyses

5  Sample collection  7    Data handling

10  Information utilisation

3 Monitoring strategy

   4 Network design

       9   Reporting

  8  Data analysis

  2 Information needs
 

 

Figure 14.1 
Reporting on water 
quality (with e.g. 
yearbook) is one of the 
steps in the monitoring 
cycle. 

 

 

Normally water quality monitoring is conducted with one or more of the following ‘global objectives’ in 
mind: 

• 

• 

• 

a) to build up an overall picture of the aquatic environment thus enabling pollution cause and effect 
to be judged 

b) to provide long-term background data against which future changes can be assessed (i.e. 
baseline information) 

c) to detect trends 
d) to provide warnings of potentially deleterious changes  
e) to check for compliance or for charging purposes 
f) to precisely characterise an effluent or water body (possibly to enable classification to be carried 

out) 
g) to investigate pollution 
h) to collect sufficient data to perform in-depth analysis (eg, mathematical modelling) or to allow 

research to be carried out 
i) to assess suitability of water for various uses, such as irrigation 
 

These global objectives can also be considered under three separate categories of sampling, i.e.: 

Monitoring - long-term standardised measurements in order to define status or trends (i.e.: a, b 
and c above) 
Surveillance - continuous specific measurements for the purpose of water quality management 
and operational activities (ie: d and e above) 
Survey - a finite duration, intensive programme to measure for a specific purpose (ie: f, g and h 
above) 
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These three basic sampling categories can be further split into a number of sample types, each of 
which have a specific objective.  These sample categories, types and their associated objectives are 
described in Table 14.1. Naming of objectives as routine monitoring, multipurpose monitoring, etc. 
should be replaced by well defined terms as noted above. 

As far as this manual is concerned, it is important to realise that water quality monitoring is a sub-set 
of the overall hydrological monitoring programme.  For this reason the ‘Monitoring’ category identified 
above is the most important of the sampling categories as it will enable a complete flow and 
concentration (and therefore load) profile to be built up for all analytical parameters of interest in all of 
the catchments within the study area. 

Category Type Objective 
Monitoring Baseline Natural Background Concentrations 
 Trend Detection of changes over time due to 

anthropogenic influences 
 Flux Calculation of load 

Calculation of mass flux 
Surveillance Water Use Check that water is fit for use 
 Pollution Control Check effects of discharges 

Check water quality standards 
Survey  Classification Classification of reach 
 Management and Research Investigation of pollution and need for 

corrective measures 
Special Interest 
Filling in knowledge gaps 

Table 14.1: Water Quality Monitoring Objectives for different monitoring categories 

14.3 COMPONENTS OF THE WATER QUALITY YEARBOOK 

Whether or not water quality is reported independently or together with hydrology, there are several 
suggested components for the Water Quality yearbook which are presented below. 

The yearbook is not expected to be a book full of data tables of all measured values. These data are 
stored in the State Data Centers, and can be obtained if specifically required. Instead, the yearbook 
should give an overview of the most important water quality issues in the State / river basin via a 
series of graphs and limited descriptive text. Suggested reporting items are given below. Additional 
items can be added to the yearbook if they are considered important. 

1. Overview Map(s) 

A yearbook for a state or should be organised by river basin. For each river basin there should be an 
overview map showing all stations of the following type: 

WQ station CWC • 
• 
• 
• 
• 

WQ station state 
WQ station PCB 
Hydrologic station of CWC 
Hydrologic station of the state 

 

Note: that both water quality and quantity stations are to be shown. This is to indicate if river 
discharge data are also available at (or near) the water quality station. Also, the locations of stations 
from different monitoring organisations are shown. This is to give an overview of all the water quality 
data available in the state / river basin. These maps are not expected to change significantly from one 
year to the next. 
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2. Time Series Plots  

Time series plots are a way of showing water quality conditions. A plot shows results for one station 
and one parameter, showing all data values for the year (see example in Figure 14.2).  The following 
guidelines should be followed: 

Make plots of selected parameters for a limited no. of stations;  • 
• 
• 

Water Quality standards (if existing) should be shown on plot. 
Yearly mean values and their confidence interval must be listed. The % of samples violating a 
specific standard may be shown. 

 

Time Series
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Figure 14.2: Time series plot for the year 1988 for phosphorus concentrations at  
  Amsterdamplas (data in Table 8.21) 

Example Analysis: Phosphorous is measured at location Amsterdamplas once a month. Twelve 
measurements have been made in the year 1988. The time series plot of phosphorus shows that 
concentrations are fairly constant throughout the year, though the months of May-October have 
elevated values. May and October have the highest concentrations (>0.9 mg/L).  

Time series plots should be made for the selected parameters in Table 14.2 (if data are available). 
These parameters are good indicators of water quality: 
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Parameter Parameter group WQ standard (target) 
Temp  General None 
TDS or EC General TDS  500 mg/L , (drinking water std.) 

EC  2250 umho/cm (for irrigation water) 
SAR Major Ions (indirect) 26 (for irrigation) 
DO General 4 mg/L (min value) 
BOD Organic matter 3 mg/L (target) 
TotP & 
NO3 

Nutrients  
Nitrate 10 mgN/L (drinking water) 

selected pollutants Trace metal or pesticide  

Table 14.2: Suggested water quality parameters to include in water quality yearbook  
  (minimum list)  

3. Plotting historical data  (multiple years) 

The purpose of plotting the data for multiple years is to see how a given year compares with 
measurements from previous years. Linear trends or step trends may then be apparent. Two main 
options exist for plotting historical data. 

Time Series with historical data 

This time series plot will be similar to that under Step 2, but will include the historical data.  

Time Series
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Figure 14.3: Time series plot for the years 1981-88 for phosphorus concentrations at  
  Amsterdamplas (data in  Table 8.21). 

Annual box and whiskers plot 

An (annual) Box-Whisker plot is an ideal way to see the given year compared to previous years. 
Because the plot shows only the main statistics of each year, (e.g. min, max, and mean) it is easy to 
see important changes from year to year.  
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The following general guidelines should be followed for either the historical time series plot or the 
annual Box-Whisker plot: 

• 

• 
• 

4. Comparison of stations for a given year 

The purpose of plotting the several different stations for a given year is to see the relative 
concentrations at different locations. With such a plot it is easy to answer questions such as: 

• Which station had the highest measured concentration of parameter (x) this year?  
• 
• 

• 

• 

A plot shows results for one station and one parameter, for multiple years (see example in Figure 
14.4). 
Make plots of selected parameters for a limited no. of stations.  
Make plots for the same parameters and the same stations as in Step 2. 

 

Yearly Minimum, Mean and Maximum
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Figure 14.4: Annual box and whiskers plot for phosphorus concentrations at Amsterdamplas  
for 1981-1988 (data in Table 8.21) 

Analysis:  From the plots showing the historical data, one can see that 1988 has the lowest measured 
P concentrations for the period 1981-1988 at location Amsterdamplas. The concentration in 1988 
never is above 1 mg/ while in several previous years the mean concentration has been greater than 
2.5 mg/L. 

Which station had the lowest measured concentration of parameter (x) this year? 
Are the highest concentrations all in the same river basin? 

 

The following guidelines should be followed: 

A plot shows data for multiple stations and one parameter. Data for each station are shown with 
box-whiskers drawing using data for 1 year (see Figure 14.5). 
This plot can be made for all stations within a river stretch or within a state or basin. 
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• A separate plot is made for each parameter. All stations where there is available data can be 
included in the plot. Make plots for the selected parameters as in Step 2 (Table 14.2). Additional 
parameters may also be selected for plots (if they show relevant information). 

 

 
Figure 14.5: Comparison of water quality (concentration P) in 1988 at 6 different locations 

5. Mass load calculations 

For selected stations (of Flux type) and for selected parameters, e.g. BOD, solids, total Nitrogen and 
total Phosporus yearly mass loads (expressed in kg/year) should be presented at relevant locations 
such as state boundary crossings or river flow in to lakes and reservoirs. 

6. Water Quality Classification 

The Central Pollution Control Board (CPCB) has identified predominant uses of water, calling them 
designated best use, of different water bodies or stretches of river and also defined water quality 
criteria for different uses of water. These criteria are given in Table 14.3. Class A is the best water 
quality while Class E is the lowest quality. 

Based on the monitoring data, the water quality is compared with the criteria for the designated best 
use. If the required water quality parameters have been measured at a locations, then the station can 
be classified as type A-E. The water quality must meet all the criteria in a class order to be in the 
class. If one of the criteria for a class is not measured, then the site cannot be classified in that class; 
e.g. if coliforms or BOD are not measured at a site, then it is not possible to say if the site is of Class 
A, B or C since these classes have criteria limits for both coliforms and BOD).  
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Designated best use Class Criteria 
Drinking water source without 
conventional treatment but after 
disinfection  

A Total coliform organisms MPN/100mL shall be 50 or less. 
pH between 6.5 and 8.5 
Dissolved oxygen 6 mg/L or more 
Biochemical oxygen demand 2 mg/L or less 

Outdoor bathing (organised) B Total coliform organisms MPN/100mL shall be 500 or less 
pH between 6.5 and 8.5 
Dissolved oxygen 5 mg/L or more 
Biochemical oxygen demand 3 mg/L or less 

Drinking water source with conventional 
treatment followed by disinfection 

C Total coliform organisms MPN/ 100mL shall be 5000 or less 
pH between 6 and 9 
Dissolved oxygen 4 mg/L or more 
Biochemical oxygen demand 3 mg/L or less 

Propagation of wild life, fisheries D pH between 6.5 and 8.5 
Dissolved oxygen 4 mg/L or more 
Free ammonia (as N) 1.2 mg/L or less 

Irrigation, industrial cooling, controlled 
waste disposal 

E pH between 6.0 and 8.5 
Electrical conductivity less than 2250 micro mhos/cm 
Sodium absorption ratio less than 26 
Boron less than 2mg/L 

Table 14.3: Primary water quality criteria for various uses of fresh water 

An overview of the water quality in a given river basin or state can be given based on this 
classification system. For example, with the following table format: 

Class No. of Stations 
 in Class 

A 3 

B 2 
C 4 
D 4 
E 6 

10 
Total no. Stations monitored  29 
NC (Not Classified)*  

* due to insufficient parameter information 

Table: 14.4: Example (hypothetical) overview of water quality for monitored stations 

In the above hypothetical example, 29 stations are monitored in a river basin (or state), of which 10 
cannot be classified due to insufficient parameter information (if for example coliforms were not 
measured). The other 19 stations have been classified as type A-E.  

Figure 14.6 shows the application the designated best use criteria to some stations using a colour 
(see legend) to indicate the fitness for a particular use (drinking and or bathing, wildlife and irrigation) 
evaluated per parameter 
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Figure 14.6: River water fitness for various stations (vertical). Three types of use are distinguished  
  here: drinking water preparation and or bathing (classes A,B,C), wildlife (class D) and  
  irrigation (class E). If the water quality data (90-percentile of time period) violate the  
  criteria listed in Table 13.2, the value is coloured according to the legend. Fitness  
  increases from red through orange and yellow to green. 

7. Results of Survey Monitoring 

Surveillance monitoring will usually not be conducted at the same locations or for the same 
parameters from year to year. Thus presentation of these results needs to be separate from items 1-4 
above. Since surveillance monitoring is conducted for problem issues, it is assumed that the results of 
these studies is relevant for a yearbook. Surveillance monitoring likely will be for pollution parameters 
such as (e.g. coliforms, heavy metals, pesticides, organic pollutants, ammonia).  

Results of survey monitoring to be presented include: 

target of the study, problem definition, objectives of monitoring • 
• 
• 

• 
• 

Map showing location(s) monitored 
Time series plots for 1 year, for the WQ parameters included in the surveillance. The water quality 
standard must also be shown .  
Comparison of stations for the period of monitoring 
Conclusions of the monitoring programme with respect to the objectives. 
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FOREWORD

<The yearbook may include a foreword by an officer considered suitable by the agency. This person
can typically be the Chief Engineer who has the overall authority and responsibility of the functioning

of the HIS in that agency>

…
Chief Engineer
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1 Introduction

<The text given hereunder is not the actual text which must be included as the “Introduction” but could
help in appreciating the background with which the new style yearbook is intended to be developed.
Also all the examples used in the text, including tables and figures, are only indicative and do not refer
to any actual case, basin or state.>

<For briefing the readers adequately on the background, the first of the new style yearbook may
include the text giving the evolution of yearbooks in the past and how the contents of the new style
would be in line with the user needs and the available technology. This text must also bring up issues
of switching over from paper yearbook to the electronic yearbook. And also how the paper yearbook
may still be relevant to be produced, however in very less numbers, for and on demand from specific
users. One of the benefits, which the water yearbook can still bring for the HIS in the country, is the
fact that the target of preparing the yearbook itself makes it mandatory on the part of the system to
finalise data in time and produce water yearbooks within the prescribed time frame. It also is a
tangible output of the system by which the accomplishment of data observation and data finalisation
for the year under consideration can be seen.>

<It is very important in these times to evaluate which medium will be most suited for publishing the
yearbooks. The traditional way of bringing out the yearbook as printed documents could now turn
towards electronic yearbooks. The electronic yearbooks may still have the same content (one may
even afford to include more, in fact, if required) and structure as the hard copy yearbook. However,
they are presented to the users in the form of a CD or may even be accessible (in a controlled manner
as per the guidelines of the agency) through internet instead of distribution as hard copies. First of all,
the system has to ascertain the genuine requirement of the hard copy water yearbooks, as printing
yearbooks in large numbers may need a lot of funding. Also, hard copy yearbooks may not always be
so effective a medium for the users to get data and information, specially nowadays when most of the
information flows digitally. However, there would always be a need to also have a hard copy
yearbook, even if it will be required in very few numbers. One of the benefits of the hard copy
yearbook is that it serves as an additional paper archive of most of the data. Secondly, for certain
users and situations, hard copy yearbooks will be the preferred medium as against the electronic
yearbook, which always necessitate availability of a computer. An objective approach could be
followed while deciding on the extent upto which the contents of the yearbook has to be printed and
distributed as hard copies. For the purpose of archives and as the key reference document for internal
use by the agency (like, in the data centres and in design and planning wings), it may be required to
print the whole yearbook. Such full copies could be in a limited number. However, the hard copies that
are required for distribution to other hydrological data users, may be limited to an abridged version of
the whole yearbook. This abridged version may include most of the items of the full yearbook except
all the data tables. Data tables for only very few stations could be included, mainly as samples. For
such readers, it is assumed that they would not require to refer data for any particular station. They
would only be interested to know about the hydro-meteorological and hydrological behaviour in the
region in general and that they could preferably use the electronic water year book for any reference
whenever needed.>

<The major change in the style of water yearbook is in introducing more graphs and pictures that may
enable necessary and adequate comprehension that the reader may like to have about the hydro-
meteorology of the region. Pictorial options allow large volumes of data to be summarised in a
nutshell. Notwithstanding the fact that these graphical representations could be sufficient for most of
the readers and also the fact that most of the data could be readily made available from the organised
databases to the requesting users, it would still be essential that the data is also presented and
available in well laid-out data tables. As was the case in earlier editions of the yearbooks, it would be
desirable that most of the data on daily or larger interval is presented in these tables. Such availability
of nicely laid-out tables would enable the data to be presented in an attractive format whenever some
reference is required to be made.>
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<Another addition to the earlier yearbooks may be by including few interesting articles on some
relevant themes of the hydrological regime of the region. It would always be interesting for any reader
to get to know about some significant trends in the rainfall or flow or water quality patterns in the
region. Floods and droughts continue to haunt people in most of the regions of our country. It could be
appropriate to highlight some of the hydrological features of such extreme flood and drought
situations. Similarly, awareness about quality of water has grown manifold in the last 1-2 decades due
to enormous pressure on water as natural resource and unavailability of good water in sufficient
amounts for most of the uses. In such a situation it can be helpful if some alarming water quality
situations are highlighted in the form of articles. Besides these articles being informative on one hand,
they would many times be eye openers for the policy makers and managers of the water resources
systems. At the same time they would make interesting reading for others and also incidentally help in
reminding the personnel working for the HIS to understand and appreciate the importance of data
being collected and information being derived.>

<The central idea of the yearbook is to review and communicate, to the target readers, what kind of
hydro-meteorological and hydrological scenario prevailed in the region during the year under
consideration. For this, it is appropriate to first give information about the water resources, drainage
system and land use in the region followed by the layout of the monitoring network on the basis of
which all the information is obtained and derived. Both, hydro-meteorological and river gauging
(including water quality) networks can be shown in the form of maps. Further, hydrological reviews
could be given which describe the behaviour of the hydrological processes in the region. Various
types of data, viz. rainfall, evaporation, river levels and flows and water quality can be summarized
with the help of graphs and data tables. Graphical illustrations showing the process during the year
under consideration against the long term pattern could be very effective. Together with the graphical
illustrations summarizing the hydrological and hydro-meteorological behaviour, it is worthwhile to
tabulate the daily data and the important monthly and yearly statistics along with it. Such tabulations
enable easy referencing to any particular data at any point of time, without requiring to interrogate the
databases for retrieving the same.>

<Further, it could be valuable for the readers, to include valuable reference material such as
bibliography of previous yearbooks or other information sources on the matter, brief notes on
procedures followed for observations in the field and notes on the interpretations of the terms used in
the yearbook.>

2 Water and Life in   <put the name of the region being reported
upon>

<The idea is to include few articles in the yearbook so as to make it appealing to various users.
Traditionally, the yearbooks have been focusing more on presenting the data tables and less on
highlighting some of the extreme events or events which may be of concern or interest to the users in
general and designers, planners or managers in particular. Typically, what interests more is
something that is different from the average, like severe storms, flooding or drought situations or a
changing pattern in rainfall or flows in the region. Similarly, growing concern for water quality warrants
bringing up some of the deteriorating WQ situations in the region, for the benefit of the users. Some
such articles that are informative and sometimes even can be an eye opener could be written by DPC
staff members and included in the yearbook. It is not essential that the yearbook must necessarily
contain a specific number of articles. Emphasis would be more towards capturing the readers’
attention rather then simply producing the data tables.>

2.1 Article 01 – Extreme rainfall events of 1997

<Such article can include some of the heaviest rain events of the year under consideration. Severe
events of particular duration like 1 hr., 3 hr., 6 hr., 12 hr., 1 day, 2 days or 3 days could be identified. A
comparison of such identified events with the previously recorded heaviest storms in the region can
indicate the importance of such events for derivation of revised heaviest storms for given duration.>
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<Illustrations are given in Figure 2.1 and 2.3, showing the spatial distribution of 1 day and 2 days
heavy storm over the catchment for the year under consideration. Temporal distribution of this storm
as recorded at two stations is also given subsequently in Figure 2.2 and 2.4. Such graphs can help
understand the type of temporal distributions of these extreme events. Temporal distribution of
previous heaviest 1 day event in the region as recorded at one of the stations is also shown in Figure
2.5 for the purpose of reference.>

Figure 2.1: Spatial distribution of 1 day storm over the catchment (1 August 1997)

Figure 2.2: Temporal distribution of rainfall on 31 Jul - 1 Aug. 1997 at Station Bayad (290 mm)
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Figure 2.3: Spatial distribution of 2 day storm over the catchment (1-2 August 1997)

Figure 2.4: Temporal distribution of rainfall on 1-2 August 1997 at Station Helodar (240 mm)
 (seems to have a 1 day shift in the data)
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Figure 2.5: Temporal distribution of heaviest 1 day storm recorded in past  -
23-24 August 1990 at Station Bayad (398 mm)

2.2 Article 02 – Flooding in the region

<One of the important objectives for continuously monitoring and organising the hydrological data is to
be able to mitigate natural disasters as floods and droughts. Inspite of the best efforts, these hazards
continue to haunt the societies or settlements. In many cases there still remains a lot to be done in
terms of providing further protection from floods and droughts by taking specific structural and non-
structural measures. >

<In view of this, it would be appropriate to include some interesting articles on extreme flooding,
experienced in parts of the region in the year of reporting. These articles could be supported by some
illustrative photographs and hydrographs or other graphs. These articles could create more interest
about such extreme events and about hydrological data in general. Incidentally, such articles may
provide good reference to such events at a later date to the interested investigators.>

Figure 2.6  Scenes of severe flooding and damage in the region
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<Together with giving an account of the severe flooding, with the help of text and photographs, it
could be appropriate to include hydrographs at certain locations along the river during the flooding
period. Such graphs would give a good view of how long the waters remained above the danger
levels and how severe was the flooding. >

Figure 2.7: Water levels in the rivers at specific locations during flood season

2.3 Article 03 – Drought  condition in the region

<Similar to floods, many of the regions in most of the states of the country continue to remain
vulnerable to drought conditions. It would be appropriate to bring out some salient features of the
droughts passed by, so as to arouse curiosity and generate interest among the data users in general
and people responsible for drought mitigation measures in the region in particular.>

<One of the benefits that comes from the preparation of such articles is that the officers engaged in
processing the data tries to look at the data closely, learn about the behaviour of the hydrological
regime in the region, and becomes familiar with the past important events.>

<Such articles on droughts could be supported by some very illustrative photographs and patterns of
the droughts both spatially and temporally and also magnitude wise. Such pictures and graphical
patterns are given as examples in Figures 2.8 to 2.11 respectively.>

Water Level Hydrographs during Flood Season
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Figure 2.8:
Scenes of severe drought situation in the region

Figure 2.9:
Annual rainfall pattern in the
drought stricken region
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Figure 2.10: Rainfall pattern as percentage of long term annual rainfall

2.4 Article 04 – Trends in rainfall in the region / flows in …<put name of
river>

<There is tremendous pressure on water as a resource, specially in our country due to increasing
population. At the same time there is growing concern about possible changes in rainfall and runoff
regimes in the regions due to global and/or local factors. There is substantial shift in the land use
pattern in most of the regions of the country where more and more areas are being brought under
cultivation, settlements and industries. In such circumstances the earlier flow patterns are likely to
change. One of the basic objectives of hydrological monitoring is to keep abreast with these changing
patterns of hydro-meteorological and hydrological factors in the region. In order to highlight any such
significant shifts in the patterns, it will be appropriate to include illustrative articles documenting such
trends with the help of graphs and interpretations.>

2.5 Article 05 – Water Quality concerns

<As for articles on quantitative aspects of the hydro-meteorological regimes, it would be highly useful
and relevant to include articles on water quality aspects. A short example is given hereunder that is
having only an indicative value.>

Trends in water quality

A time series plot for BOD (3 years period i.e. from 1996 to 1998), all dates and annual average is
plotted as shown in Table 2.1 and Figure 2.11 below. As revealed from the graph BOD values up to
1997 varied between 0.1 and 1.1 mg/L with an average of 0.45 mg/L. The observed increase of the
maximum and average value in 1998, 1.4 and 0.67 mg/L respectively are very small compared to the
large spread of the data, caused by the sharp decrease in the number of observation in 1998. The
data therefore do not indicate a significant increase in BOD at this station.

 A similar plot as presented in Figure 2.11 may be included for longitudinal analysis of a
river or river stretch: different monitoring stations are presented on the horizontal axis of
the graph.
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Figure 2.11: Box-whisker graph for BOD at station Polavaram

Year 1995 1996 1997 1998 1999 2000

Max - 1.000 1.100 1.400 - -

Mean - 0.444 0.463 0.667 - -

Min - 0.200 0.100 0.200 - -

Median - 0.400 0.400 0.500 - -

10% - 0.200 0.200 0.200 - -

25% - 0.200 0.300 0.200 - -

75% - 0.600 0.600 1.200 - -

90% - 0.900 0.800 1.400 - -

No. data 0 32 32 6 0 0

Table 2.1: Yearly time-series for summary statistics for BOD at station Polavaram

3 Hydrological Information System

3.1 Water Resources of …<put the name of the region being reported upon>

<This section would highlight the salient features of the surface water resources available in the
region by briefly introducing all major river basins, natural lakes and artificial reservoirs. Together with
the appraisal of the drainage and water resource systems available in the region, it would be
appropriate to highlight the various types of uses the land is put to. The uses like forest, grazing,
agriculture, industry, urban settlement etc. will help in appreciating the tremendous pressure on water
in various places of the region. This will indirectly also emphasis the need to better manage the
available waters.>

<Much of the information will be available through various maps included in this section, as listed here
under. >

<MAP 01 - A MAP OF THE PHYSIOGRAPHIC FEATURES – ELEVATION, RIVERS & BASINS,
LAKES, RESERVOIRS>
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<MAP 02 - ANOTHER MAP THAT MAY BE USEFUL IS THE LAND USE MAP OF THE SAME
REGION AS GIVEN IN MAP ABOVE >

<ALL MAPS TO BE GIVEN ON FULL PAGES>

< In fact, such a graphical presentation of the water resource systems will provide the background
and link for why a good hydrological information system is needed in the region for managing the
available water resources appropriately.>

<  Together with the information provided by the maps it will be appropriate to include brief description
of salient features of various river basins in the state / region. A sample is given hereunder that can
further be expanded to include more relevant information in a crisp manner.>

Godavari Basin (only as an example)

The Godavari river basin is one of the 14 major river basins of India having a catchment area of
3,12,812 km2 which is nearly 10 percent of the total geographical area of the country. It spreads over
Maharashtra (48.7%), Madhya Pradesh (20.8%), Andhra Pradesh (23.4%), Orissa (5.7%) and
Karnataka (1.4%).  The river traverses a distance of 694 km through Maharashtra and 771 km
through Andhra Pradesh, totalling 1,465 km, before discharging into the Bay of Bengal.

The major tributaries of the river Godavari are Pravara, Purna, Bindusara, Manjira, Penganga,
Wainganga, Wardha, Pranahita, Indravathi, Maner and Sabari.

3.2 Hydro-meteorological and hydrological observation system

3.2.1 General

<The text in this section would include the background on hydro-meteorological and hydrological
observations in the area under consideration and how such observation systems have evolved over a
period of time. This may also include how different agencies share the whole task and compliment
each others networks. A mention of the various field Divisions of the agency covering the entire area
may also come in the text.>

<In case of the State agencies, the whole area may be suitably divided into various River
Basins/Zones and the reporting in all the subsequent sections should also follow the same grouping.
That means all the sections would have sub-sections for each of the River Basins/Zones of the state.>

<The maps and text included in this section gives complete understanding of the three types of
networks, viz. hydro-meteorological network (SRG/ARG/FCS), hydrological network (river gauging,
reservoirs and lakes) and WQ network in each of the River Basins/Zones. The text must also specify
what has been added or removed from these respective networks in the year of reporting.
Improvements in terms of equipment and facilities could also be highlighted. Information about the
system’s coverage in terms of various types of data to be observed together with the respective
monitoring frequencies to be maintained will be helpful to the readers in appreciating the scope and
extent of the information that can be available from the system. Similarly, an overview of how the data
has been scrutinised at various levels for assuring its quality would be beneficial for readers’
understanding of the whole mechanism of collection of data in the field to the presentation of data in
the water yearbook. Furthermore, a section on how much of the data of the year under reporting fall
short of the target would be appropriate. This section would briefly show what information would not
be available though it was expected and would thus clear ambiguity about availability of such data. >
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<The subsequent sub-sections cover all issues mentioned above for (a) hydro-meteorological, (b)
hydrological and (c) water quality observation networks.

3.3 Hydro-meteorological observation system

3.3.1 Network layout and adaptations in reporting year

<The text should refer to the map showing the meteorological network of SRG, ARG and FCS
stations. On the basis of number of the stations of various types, a table could be made about the
density of observation stations of various types in every river basin or zone.>

<Highlight what improvements have been effected in the year under consideration in terms of new
stations, equipment/procedures etc.>

<A comprehensive listing of the observation stations must be provided for the benefit of the user so
that any station can be easily referred. A sample of such table in given as Table 3.1. This table must
be put in Annex – A, rather than in this main text of the water yearbook. This will avoid imbalance of
the text by putting a huge table in between. Also, availability of such table separately in the Annex
would be better for accessing it electronically. Highlight what has been changed in the network in
terms of addition or removal of stations. This could be given in tabular form giving name, location and
the period for which the station remained operational. Any such new station could also be highlighted
in the tabular presentation of the list of stations in the network. The station listing in Tbale 3.1 also
shows a few key static characteristics along with. It is also important to mention about changes in the
frequency of observation introduced in the system, if any, as a result of the systems review in light of
emerging user requirements. >

Figure 3.1:
Meteorological observation network in
?? River Basin/Zone (full page)

< The map in Figure 4.1 could also simultaneously show agency’s jurisdiction together with
boundaries of various divisions and locations of SDDPCs/DDPCs/SDPC headquarters and distinct

hydrological regions in the state >
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Table 3.1:  List of meteorological observation stations (Grouped by River and district and sorted by station names)

S.No. River District Station Name Station Code Tehsil Tributary Lat. Long. Alt. (m) Date of Establi-
shment

SW - Type

1 Amba Raigad Pali Pali Sudhagad - 183152 731205 22.4 01/06/1972 FCS
2 Payarachiwadi Payarwadi Sudhagad Walki 183300 731600 22.4 31/03/1988 SRG
3 Tuksai Tuksai Khalapur - 184149 731800 43.1 31/03/1988 ARG
4 Bharja Thane Gonde(Kd) Gonde(Kd) Mokhada Wagh 195522 732200 400.0 01/06/1986 ARG
5 Daman Ganga Thane Jamsar Jamsar Jawhar Wagh 195820 731409 395.0 01/06/1986 SRG
6 Juni Jawhar Juni Jawhar Jawhar Jawhar 195348 731358 400.0 01/08/1977 SRG
7 Khadadi Khadadi Jawhar Wagh 195910 731409 300.0 01/06/1986 ARG
8 Shindyachapada Shindyapada Mokhada Wagh 195817 732234 400.0 01/07/1986 ARG
9 Deoghar Sindudurg Baparde Baparde Deogad Local nala 162618 732854 19.6 01/06/1991 ARG

10 Deogad Deogad Deogad - 162219 732328 45.7 01/05/1969 SRG
11 Phondaghat Phondaghat Kankawali Kharada 162154 734757 145.1 01/05/1969 SRG
12 Talere Talere Kankawali Kharada 162712 733916 152.4 01/05/1990 SRG
13 Gad Sindudurg Digawale Digawale Kankawali - 161415 735000 91.5 01/05/1969 SRG
14 Golvan Golvan Malvan - 160831 733340 76.2 01/05/1990 SRG
15 Kankawali Kankawali Kankawali - 161642 734244 76.2 01/05/1969 SRG
16 Kasal Kasal Kudal Kasal 161003 734139 45.7 01/05/1990 SRG
17 Nardave Nardave Kankawali - 161201 735207 131.0 01/05/1990 SRG
18 Palsamb Palsamb Malvan - 161407 733251 30.5 01/05/1991 SRG
19 Tarandale Tarandale Kankawali - 161811 734224 76.2 01/05/1990 SRG
20 Godavari Ahmednagar Adhala Adhala Akola Adhala 193644 740605 626.0 01/07/1995 ARG
21 Bhagur Bhagur Shevgaon Nani 191929 751226 472.0 01/06/1989 ARG
22 Bhavarwadi Bhavarwadi Newasa - 191638 744917 605.0 01/06/1976 SRG
23 Bodhegaon Bodhegaon Shevgaon - 191816 752752 468.0 01/06/1976 SRG
24 Brahmangaon Brahmangaon Kopargaon - 195742 742617 520.0 01/06/1959 SRG
25 Kopargaon Kopargaon Kopargaon - 195210 742746 499.0 01/06/1989 FCS
26 Kotul Kotul Akola Mula 192603 735808 715.0 01/07/1990 ARG
27 Manjur(Handewadi) Manjur Kopargaon - 195445 741650 530.0 01/06/1959 ARG
28 Mhaladevi(Induri) Mahaldevi Akola Pravara 193250 735537 578.0 01/06/1969 ARG
29 Mungi Mungi Shevgaon - 192421 752648 432.0 01/06/1972 ARG
30 Newasa Newasa Newasa Parvara 193308 745543 471.0 01/01/1978 FCS
31 Padhegaon Padhegaon Kopargaon - 195553 743315 515.0 01/06/1959 ARG
32 Panegaon Panegaon Newasa Mula 192850 744738 483.0 01/06/1988 ARG
33 Godavari Ahmednagar Rahata Rahata Kopargaon - 194253 742907 512.0 01/06/1959 SRG
34 Samangaon(Male) Samangaon M Shevgaon Godavari 192026 750626 480.0 01/06/1988 ARG
. . .
. . .
. . .

Note:  Shaded rows in the table indicate those stations that are put up newly during the reporting year.
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3.3.2 Monitoring and processing

<It would be beneficial to present the salient features of the observation systems being used for
various types of stations. Equipment and practices about following type of stations can be outlined, for
example:

Hydro-meteorological Observation Network                  

ARG stations: Brief note on the equipment available – type of ARGs used in the network
and observation practices employed

FCS stations: Brief note on the type and range of equipment employed – observation
practices

< Together with the above note on the data collection plan, it would be good to briefly define the
various primary and secondary validations and data processing carried out while finalising the data.
Such a background will create greater awareness among the data users about the type of data
processing the data has undergone.

3.3.3 Data collection in reporting year

< This sub-section can bring out the accomplishment in terms of percentage of data collection target
achieved. Together with such percentages for various data types it would be appropriate to briefly
mention about the reasons of the shortfall in collection of data. It may be due to equipment
malfunctioning, maintenance issues, availability of required personnel and consumables required for
observation.

3.4 Hydrometry and sediment transport

3.4.1 Network layout and adaptations in report year

<The text to refer to the map showing the network of river gauging / reservoir stations
(G/GQ/GD/GDS/GDSQ/GDQ).>

<Highlight what improvements have been effected in the year under consideration in terms of new
equipment/procedures, etc.>

<Highlight what has been changed in the network in terms of addition or removal of stations. This
could be given in tabular form giving name, location and the period for which the station remained
operational. Any such new station could also be highlighted in the tabular presentation of the list of
stations in the network.  It is also important to mention about changes in the frequency of
observation.>
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Figure 3.2:
Hydrological observation
network in ?? River Basin/Zone
(full page)
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Table 3.2:  List of hydrological observation stations (Grouped by River and district and sorted by station names)

S.No. River District Station Name Station Code Tehsil Tributary Lat. Long. Alt. (m) Date of Establi-
shment

SW - Type

1 Amba Raigad Burmali Burmali Sudhagad Walki 183129 731330 22.6 01/06/1993 GD
2 Pali Pali Sudhagad - 183152 731205 22.4 01/06/1972 GD
3 Salinde Salinde Pen Nigade 183718 730632 20.0 01/06/1994 GDS
4 Tuksai Tuksai Khalapur - 184149 731800 43.1 31/03/1988 GD
5 Bharja Ratnagiri Latwan Latwan Mandangad - 175555 732051 121.9 01/12/1983 GDS
6 Daman Ganga Nashik Usthale (Hedpada) Usthale Peth Damaganga 201200 733237 378.0 06/06/1982 G
7 Thane Gaheli Gaheli Jawhar Wagh 200700 731503 90.0 01/06/1999 GD
8 Khadadi Khadadi Jawhar Wagh 195910 731409 300.0 01/06/1986 GD
9 Khadkhad Khadkhad Jawhar Wagh 195654 731634 30.0 01/06/1987 G

10 Shindyachapada Shindyapada Mokhada Wagh 195817 732234 400.0 01/07/1986 GD
11 Ghonsari(L) Ghonsari(L) Kankawali Kharada 162405 734616 111.8 21/09/1965 GDS
12 Godavari Ahmednagar Bhagur Bhagur Shevgaon Nani 191929 751226 472.0 01/06/1989 GDS
13 Kopargaon Kopargaon Kopargaon - 195210 742746 499.0 01/06/1989 GD
14 Mhaladevi(Induri) Mahaldevi Akola Pravara 193250 735537 578.0 01/06/1969 GD
15 Newasa Newasa Newasa Parvara 193308 745543 471.0 01/01/1978 GD
16 Panegaon Panegaon Newasa Mula 192850 744738 483.0 01/06/1988 GD
17 Godavari Ahmednagar Samangaon(Male) Samangaon M Shevgaon Godavari 192026 750626 480.0 01/06/1988 G
18 Sangamner(Waghapur) Sangamner Sangamner Pravara 193308 741400 551.0 01/07/1989 GD
19 Amravati Warud Bagaji WarudBagaji Tiwasa Wardha 205230 781544 274.7 06/08/1987 GD
20 Aurangabad Chinchkhed Bhavan Chinchkhed Sillod Purna 201622 753843 583.0 01/06/1984 GD
21 Nagamthan Nagamthan Vaijapur - 194344 744726 476.0 01/06/1987 GD
22 Solegaon Solegaon Gangapur Shivna 194215 750558 467.0 01/06/1988 G
23 Bhandara Chichghat Chichghat Bhandara Wainganga 210448 793406 249.0 18/04/1986 GDS
24 Kardha Kardha Bhandara Wainganga 210840 794019 246.0 01/06/1977 GD
25 Lakhandur Lakhandur Lakhandur Wainganga 204406 795232 222.5 28/06/1988 GD
26 Mahalgaon Mahalgaon Tumsar Wainganga 213033 795422 263.1 01/06/1990 GD
27 Sitekasa Sitekasa Bhandara Wainganga 213104 793514 323.0 01/06/1985 GD
28 Buldhana Fardapur Fardapur Mehkar Painganga 201030 763354 527.5 01/06/1985 GDS
29 Raheri Raheri Sindhkhed Raja Purna 195900 761654 494.0 01/01/1988 GD
30 Dhaba Dhaba Gondpipri Wardha 193146 793520 162.0 01/07/1988 GD
31 Dindora(Soit) SoitDindora Warora Wardha 201644 784912 203.2 01/06/1988 GD
32 Godavari Chandrapur Gadbori Gadbori Sindewahi Wainganga 201731 793534 199.3 01/06/1972 GD
33 Nandgur Nandgur Chandrapur Wainganga 200105 793044 187.6 01/06/1978 GDS
. . .
. . .
. . .

Note:  Shaded rows in the table indicate those stations that are put up newly during the reporting year.
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3.4.2 Monitoring and processing

<It would be beneficial to present the salient features of the observation systems being used for
various types of stations. Equipment and practices about following type of stations can be outlined, for
example:>

Hydrological observation Network

Gauge & Discharge stations: Brief note on available equipment – current meters,
water level recorders. Method of observation – single
point or multiple point velocities. Mechanism for crossing
the river – boats, bridges, cableway (what types)

Sediment stations: Type of sampler used and analysis procedure employed

< Together with the above note on the data collection plan, it would be good to briefly define the
various primary and secondary validations and data processing carried out while finalising the data.
Such a background will create greater awareness among the data users about the type of data
processing the data has undergone.

3.4.3 Data collection in report year

< This sub-section can bring out the accomplishment in terms of percentage of data collection target
achieved. Together with such percentages for various data types it would be appropriate to briefly
mention about the reasons of the shortfall in collection of data. It may be due to equipment
malfunctioning, maintenance issues, availability of required personnel and consumables required for
observation.

3.5 Water quality

3.5.1 Network layout and adaptations in report year

< It is appropriate to indicate which agencies are complementing each others observation network in
the region. For example, the water quality of the river Godavari and its tributaries is being monitored
by the Central Water Commission (CWC), the Water Resources Departments of Maharashtra and
Andhra Pradesh, the Ground Water Survey Division of Madhya Pradesh (SW monitoring as additional
activity), and the Central Pollution Control Board (CPCB) through the State Pollution Control Boards
(SPCB) of Madhya Pradesh, Maharashtra, and Andhra Pradesh. >

< In Godavari basin, water quality is monitored by CWC at 14 stations out of the 22 hydrological
observation stations. Besides, the State Water Resources Department monitors water quality at 13
locations. >

< CPCB has in all 21 Stations (11 on Godavari, 1 on Kalu, 1 on Manjira, 4 on Maner, 1 on
Panchaganga, 2 on Ulhas 3 on Wainganga and 1 on Wardha).>

Figure 3.3 shows the monitoring stations of the following type on one map:

• WQ stations of CWC;

• WQ stations of state SW;

• WQ stations of CPCB/SPCBs; and

• Hydrologic discharge stations
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<The text to refer to the map showing the network of water quality monitoring stations
(GQ/GDQ/GDSQ). Highlighting the various types of WQ stations (baseline, trend, flux, surveillance)
would be very useful.>

<Highlight what improvements have been effected in the year under consideration in terms of new
equipment/procedures etc.>

<Highlight what has been changed in the network in terms of addition or removal of stations. This
could be given in tabular form giving name, location and the period for which the station remained
operational. Any such new station could also be highlighted in the tabular presentation of the list of
stations in the network.  It is also important to mention about changes in the frequency of
observation.>

Figure 3.3: Water quality observation network in ?? River Basin/Zone (full page)

Table 3.3 gives the list of WQ stations in the region. Note however that this is a list of example
stations only and not the stations shown in Figure 3.3. above.
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Table 3.3:  List of WQ observation stations (Grouped by River and district and sorted by station names)

S.No. River District Station Name Station Code Tehsil Tributary Lat. Long. Alt. (m) Date of Establi-
shment

SW - Type

1 Amba Raigad Pali Pali Sudhagad - 183152 731205 22.4 01/06/1972 Trend
2 Daman Ganga Thane Khadadi Khadadi Jawhar Wagh 195910 731409 300.0 01/06/1986 Trend
3 Khadkhad Khadkhad Jawhar Wagh 195654 731634 30.0 01/06/1987 Baseline
4 Shindyachapada Shindyapada Mokhada Wagh 195817 732234 400.0 01/07/1986 Trend
5 Godavari Ahmednagar Kopargaon Kopargaon Kopargaon - 195210 742746 499.0 01/06/1989 Trend
6 Newasa Newasa Newasa Parvara 193308 745543 471.0 01/01/1978 Trend
7 Godavari Bhandara Kardha Kardha Bhandara Wainganga 210840 794019 246.0 01/06/1977 Trend
8 Godavari Chandrapur Wadsa (Chincholi) WadsaChinch Bramhapuri Wainganga 203625 795601 221.2 01/06/1965 Trend
9 Wagholi -Butti WagholiButi Saoli Wainganga 200706 795417 222.1 01/06/1964 Trend

10 Gadchiroli Bhamragad Bhamragad Bhamragad Indrawati 192500 803510 207.5 20/06/1998 Flux
11 Damrencha Damrencha Aheri Indrawati 191332 792230 175.9 01/03/2000 Baseline
12 Mahagaon Mahagaon Aheri Pranhita 192658 795812 128.3 06/06/1998 Flux
. . .
. . .
. . .

Note:  Shaded rows in the table indicate those stations that are put up newly during the reporting year.
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3.5.2 Monitoring and processing

< This section will emphasis on the monitoring program and its objectives together with understanding
of various types of data processing which is undertaken.

The different organisations involved in water quality monitoring in Godavari river basin have the
following objectives for monitoring:

1. To establish baseline quality (all agencies);

2. To observe trend in water quality over a period of time (all agencies);

3. To calculate the load (or flux) of water quality constituents of interest (e.g. silt in reservoirs);

4. To prevent and control water pollution (Central and State PCBs);

5. To have surveillance over pollution threats to water quality for sustenance of various beneficial
uses, like irrigation (State Irrigation Departments)

Monitoring Frequency

The samples are collected three times in a month by CWC and once a month by CPCB. Sampling
dates for CWC are 1st, 10th and 20th of each month in general.

• A general statement on the target frequency of sampling for the respective agencies according to
their monitoring objectives may be given here or a table indicating the targeted sampling
frequency for each station.

• Elaborate on sampling frequency of irrigation departments

• Describe the sampling programme for seasonal rivers, if applicable.

Analytical Quality Control

Analytical Quality Control (AQC) program is run among various laboratories for ensuring and
monitoring standards maintained with respect to analysis performed in the laboratories. The following
parameters are covered under the inter-laboratory AQC exercise (carried out once a year) in which
the majority of the laboratories take part.

1. Conductivity

2. Total Dissolved Solids

3. Total Hardness

4. Sodium

5. Fluoride

6. Sulphate

7. Nitrate - N

8. Phosphate-P

9. Boron

10. Chloride

 Average accuracy of the participating laboratories for relevant parameters, such as heavy
metals, may be given here in addition.

 Newly introduced parameters in the AQC programme, if any, may be mentioned here.

 All parameters associated with the laboratory level may be listed here or in an appendix.



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 205

Parameters

The level of the laboratory is an indication of the analytical capacity of the laboratory.

Level I Laboratory located in the field, generally analysing Temperature, pH, Conductivity, Dissolved Oxygen, colour
and odour

Level II Laboratory has facilities to analyse basic water quality parameters, nutrients, indicators of organic and
bacteriological pollution etc.

Level II+ Laboratory has facilities to analyse basic water quality parameters, nutrients, indicators of organic and
bacteriological pollution etc.

Laboratory is in possession of advanced equipment, such as Atomic Adsorption Spectrophotometer (AAS), Gas
Chromatograph (GC), UV-Visible Spectrophoto-meter etc.

Table 3.4: Classification of laboratories involved in monitoring as used by CWC and other HP-
Agencies.

Parameter ID Parameter Name Category Unit LWL UWL Minimum Maximum No. of
Decimals

FLD Field Determinations

Colour Code Colour Physical -

DO Dissolved oxygen Chemical mg/L 0 15 0 30 1

EC_FLD Electrical
Conductivity, Field

Physical µmho/cm 50 5000 1 10000 0

Odour Code Odour Chemical -

pH_FLD pH_Field Chemical pH units 5.5 9 2 14 1

Secchi Secchi Depth Physical m 0.01 50 0.005 100 2

Temp Temperature Physical deg C 10 40 0.1 50 1

Laboratory Determinations

DO_SAT% Dissolved Oxygen
Saturation %

Chemical % 0 150 0 300 0

EC_GEN Electrical
Conductivity

Physical µmho/cm 50 5000 1 10000 0

pH_GEN pH Chemical pH units 5.5 9 2 14 1

SS Solids,
Suspended

Physical mg/L 5 2000 0 3000 0

TDS Solids, Total
Dissolved

Physical mg/L 50 5000 5 30000 0

TS Solids, Total Physical mg/L 50 5000 10 30000 0

Turb Turbidity Physical NTU 1 2000 0.1 10000 1

NH3-N Nitrogen,
ammonia

Chemical mg N/L 0.05 100 0.05 1000 2

NO2+NO3 Nitrogen, Total
Oxidised

Chemical mg N/L 0.05 1000 0.05 2000 1

NO2-N Nitrogen, Nitrite Chemical mgN/L 0 0.5 0 10 1

NO3-N Nitrogen, Nitrate Chemical mgN/L 0.05 1000 0.01 2000 2

o-PO4-P Phosphorus,
ortho-phosphate

Chemical mg P/L 0.05 5 0.01 50 3

Org-N Nitrogen, Organic Chemical mgN/L 0.1 200 0.01 1000 1

P-Tot Phosphorus, total Chemical mgP/L 0.01 10 0.001 100 3

BOD 3-day, 27 º c Biochemical
Oxygen demand

Chemical mg/L 0.5 200 0.1 5000 1

COD Chemical Oxygen
Demand

Chemical mg/L 5 5000 1 10000 1

Alk-Phen Alkalinity,
phenolphthalein

Chemical mgCaCO3/L 0 500 0 3000 1

ALK-TOT Alkalinity, total Chemical mgCaCO3/L 10 1000 5 5000 1

Table 3.5: Example of: Details of parameters analysed by various levels of laboratories
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Parameter Parameter group WQ standard (target)

Temp General none

TDS or EC General TDS  500 mg/L , (drinking water std.)

EC  2250 umho/cm (for irrigation water)

SAR Major Ions (indirect) 26 (for irrigation)

DO General 4 mg/L (min value)

BOD Organic matter 3 mg/L (target)

TotP & NO3 Nutrients Nitrate 10 mgN/L (drinking water)

Selected pollutants trace metals or pesticides

Table 3.6: CPCB classification system for quality of water

3.5.3 Data collection in report year

< In this sub-section a brief account of what could be achieved in the year under reporting in terms of
data collection is to be given. The short summary can bring out certain typical problems that would
have hampered the data collection. An overall account of how much percentage of the target data
collection could be achieved together with the number of station-samples taken and analysed in the
year would be indicative of the system’s performance in terms of collection of data.

In this sub-section an overview of the monitoring related to pollution monitoring is given for the year
1996. In Table 3.7 the content of the database with respect to pollution monitoring is summarised: the
number of samples for BOD, Total Coliforms (TC) and Faecal Coliforms (FC) and the first and last
sampling date are indicated.

 The targeted number of samples may be added to Table 4 if one wants to indicate the
performance of operating the monitoring network with respect to the activities envisaged
in the monitoring programme.

Station characteristics overview

Godavari Pollution related Monitoring For the year 1996

Station ID Name Parameter ID First Date Last Date Number of
Samples

AG000C3 Polavaram BOD 09/03/1996 10/11/1996 32

AG000C3 Polavaram FC 0

AG000C3 Polavaram TC 0

AG000C3 Polavaram DO 07/02/1996 12/11/1996 34

AG000G7 Perur BOD 23/01/1996 03/11/1996 30

AG000G7 Perur FC 0

AG000G7 Perur TC 0

AG000G7 Perur DO 09/11/1996 01/12/1996 35

AG000J3 Mancherial BOD 01/02/1996 21/11/1996 35

AG000J3 Mancherial FC 0

AG000J3 Mancherial TC 0

AG000J3 Mancherial DO 24/01/1996 13/12/1996 35

AG000P3 Yelli BOD 09/03/1996 12/07/1996 15

Water Quality Yearbook – HYMOS Example Report 3 (HP 2002)

Table 3.7: Contents of the database for pollution related monitoring in 1996

Limitations

At present the infrastructure of the laboratories attached to the Krishna Godavari Basin Organisation
of CWC in Hyderabad are meeting the requirements for analysing all the above-mentioned
parameters. The laboratories have been upgraded to analyse also the pollution-related parameters.
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4 Hydrological review of the year <YYYY>

4.1 Summary

<This section on hydrological review tries to summaries all the aspects of the main components of the
hydrological cycle (rainfall, evaporation, runoff and water quality) one-by-one. This presentation of
information will be in the form of explanatory notes, graphs and data tables. The Summary in the
beginning attempts to highlight the salient features of the hydrological scenario for the year under
reporting>.

As an example, a short summary about WQ data is presented hereunder. Note that this is only an
indicative text and the actual text is to be based on the region and the year at hand and has to bring
out the essence of the WQ regime representing the year.

<The water quality of the Godavari River and its tributaries is being monitored by the Central Water
Commission (CWC) at 14 stations and by the Central Pollution Control Board (CPCB) at 21 stations.
The State Irrigation Departments of Maharashtra and Andhra Pradesh also started water quality
monitoring of the Godavari River. During the reporting period only CWC data are analysed for the
purpose of preparation of the specimen Water Quality Yearbook.>

<The monitoring is done three times a month by CWC. >

<The CWC analyses major ions, some inorganics, like phosphates, silicates, ammonia, aluminium
and irons, and basic parameters, like temperature, conductivity and pH. Pollution related parameters,
like BOD, COD and total and fecal coliforms have recently been introduced. >

<Most of the major ions and inorganics are genarally within the limits of drinking and irrigation
standards, whereas coliforms are the major problem in the river basin. Most of the stations monitored
do not meet the desired water quality criteria for coliforms and in some cases BOD.>

<With respect to organic pollution, i.e. BOD, COD and DO, the Godavari is worst polluted at Nashik,
and Nanded. This is mainly due to discharge of untreated domestic wastewater into the river followed
by reduced flow in the river due to water abstraction from the river in the upstream. Similarly, the river
is heavily polluted at Ramagundam, Bhadrachalam and Rajamundary towns due to discharges of
partially treated / untreated industrial wastewater along with the domestic wastewater.>
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4.2 Rainfall

<Rainfall of the year in the region could be characterised by the following figures and tables. A good
explanation of the important features which may be inferred from these figures and tables must follow
in the sub-section. Different types of figures and tables that could be representing the rainfall in the
region could be as follows: >

Figure 4.2.1 Spatial variation of the monthly rainfall (monsoon months) in the region

Figure 4.2.2 Spatial variation of the annual rainfall in the region

Figure 4.2.3 Spatial variation of the rainfall as a percentage of long term annual
average rainfall

Figure 4.2.4 Monthly rainfall of the year as seen against monthly frequency curves

Table 4.2.1 Station-wise rainfall data summary

Table 4.2.2 District-wise (or basin/sub-basin-wise, if required) rainfall data summary

Table 4.2.3 Daily Rainfall Data and associated monthly and yearly statistics (This
table needs to be given in the main text for only few representative
stations and not all the stations in the network. Similar tables for all the
stations are however to be included in the Appendices to the yearbook.
These appendices need to be printed only in required quantity and not in
bulk as mentioned in the introduction. The appendices will be readily available as
soft copy in the electronic yearbook form.

Figure 4.2.2:
Annual Rainfall in 1997



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 209

Figure 4.2.3:
Annual Rainfall in 1997 as
percentage of 1970-2000
average

Figure 4.2.4:  Monthly rainfall of 1997 as seen against monthly frequency curves
 (based on 1961-1997 period)
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Table 4.2.1:  Station-wise Rainfall Data Summary Year - 1997

Station ID Name Alt Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year LTA Max Date

  Basin A

  Ambaliyara
Balasinor
Bayad
Dakor
Helodar
Kapadwanj
Kathlal
Mahemdabad
Mahisa
Mahudha
Sathamba
SavliTank
Thasara
Vadol
Vagharoli

  Basin B

  …

  …

  …

  Ambaliyara

  Balasinor
Bayad
Dakor
Helodar
Kapdwanj
Kathlal
Mahemdabad
Mahisa
Mahudha
Sathamba
SavliTank
Thasara
Vadol
Vagharoli

72
90

135
55

180
100

47
35
65
50

152
90
65
92
72

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

473
381
428
315
338
633
448
488
492
276
239
382
428
335
473

113
226
384
120
476
197
108
125
325
112
556
139
113
233
113

279
625
526
403
572
613
545
425
642
500
468
687
525
676
279

85
40
64

0
3

105
0

90
137

97
0

95
59
85
85

0
0

16
0

27
0
0
0

28
29

0
33

0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

950
1272
1418

718
1416
1548
1102
1128
1624
1014
1263
1336
1125
1329

950

900
750
775
775
850
800
675
775
725
600
725
750
775
675
900

170.1
208.0
257.0
127.3
238.0
225.0
150.0
130.2
200.0
132.0
275.0
245.7
205.0
260.1
170.0

25/06/1997
01/08/1997
01/08/1997
01/08/1997
28/07/1997
28/06/1997
01/08/1997
25/06/1997
23/08/1997
02/08/1997
31/07/1997
01/08/1997
02/08/1997
01/08/1997
25/06/1997

…

…

…

In the above table:

Alt : is the altitude of the station in meters

LTA : is the long term average of annual rainfall

Max : is the maximum daily rainfall within the year, date of its occurrence is also given alongwith
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Table 4.2.2: District-wise Rainfall Data Summary Year - 1997

District Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year LTA

Ahmedabad

(% of 1970-2000)

Amreli

(% of 1975-2000)

Banaskantha

(% of 1975-2000)

Bharuch

(% of 1970-2000)

Bhavnagar

(% of 1975-2000)

Dang

(% of 1970-2000)

Gandhinagar

(% of 1970-2000)

Jamnagar

(% of 1975-2000)

Junagadh

(% of 1970-2000)

Kheda

(% of 1970-2000)

…

…

…

5

100

0

0

7

88

0

0

10

250

0

-

14

117

6

60

0

0

0

0

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

172

191

187

156

148

197

176

161

129

103

189

126

150

176

120

126

160

152

80

145

113

113

190

136

140

147

130

118

180

138

108

74

90

95

205

205

80

70

200

267

279

112

625

208

526

162

403

107

572

163

613

189

545

136

425

118

642

201

500

161

85

170

40

100

64

107

105

233

90

164

137

228

97

176

95

238

59

197

85

243

0

0

0

0

16

80

0

0

27

180

0

0

0

0

0

0

28

156

29

145

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

-

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

950

105

1272

170

1418

180

718

92

1416

166

1548

258

1102

152

1128

150
1624
210

1336

148

900

750

775

775

850

600

725

750

775

900

In the above table:

LTA :  is the long term average of annual rainfall

Every alternate row is the monthly and yearly rainfall in terms of percentage of long term during the specific month or year as a whole.
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Table 4.2.3: Daily Rainfall Data       Year – 1997
Station Code: Balasinor
Station Name: Balasinor

District: Kheda
Units : mm

Independent River : Sabarmati
Tributary: Watrak

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

14.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

44.0
0.0
0.0
0.0

10.0
11.0
38.0
83.0
65.0
48.0
63.0

5.0
0.0

0.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

12.0
0.0

11.0
0.0
0.0
0.0

94.0
74.0

0.0
17.0
10.0

208.0
162.0

3.0
0.0
0.0
4.0
0.0

28.0
0.0
6.0
0.0
0.0
3.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0
0.0

17.0
90.0
66.0

0.0
19.0

0.0
17.0

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

10.0
7.0
7.0
4.0
4.0
5.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
2.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Mean
Min.
Max.
Sum

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

12.7
0.0

83.0
381.0

7.3
0.0

94.0
226.0

20.2
0.0

208.0
625.0

1.3
0.0

10.0
40.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

Yearly statistics :

Mean : 3.5
Sum : 1272.0

Minimum : 0.0
Date : 01/01/1997

Maximum : 208.0
Date : 01/08/1997

No. of data : 365
No. of missing data : 0
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Table 4.2.3: Daily Rainfall Data Year - 1997
Station Code: Bayad
Station Name: Bayad

District: Sabarkantha
Units : mm

Independent River : Sabarmati
Tributary: Watrak

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
2.0

16.0
156.0
130.0

64.5
52.0

0.0
7.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0

14.5
0.0
1.5
0.0
0.0

11.0
147.5
194.5

1.5
9.0
4.0

257.0
57.5
28.5

0.0
0.0
0.0
1.5

25.0
2.0
0.0
0.0
1.0
6.0
1.0
0.0
2.0
0.0
0.0

33.0
7.0
0.0
0.0
0.0

13.5
33.0
19.0

5.5
0.0
0.0

33.0
0.0

0.0
1.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0

18.0
20.0
10.0

9.0
1.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
4.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

16.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Mean
Min.
Max.
Sum

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

14.3
0.0

156.0
428.0

12.4
0.0

194.5
384.5

17.0
0.0

257.0
525.5

2.2
0.0

20.0
64.5

0.5
0.0

16.0
16.0

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

Yearly statistics :

Mean : 3.9
Sum : 1418.5

Minimum : 0.0
Date : 01/01/1997

Maximum : 257.0
Date : 01/08/1997

No. of data : 365
No. of missing data : 0
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4.3 River flows and water levels

<River flows during the year in the region could be characterised by the following figures and tables. A
good explanation of the important features which may be inferred from these figures and tables must
follow in the sub-sections. Different types of figures and tables that could be representing the runoff in
various rivers could be as follows: >

Figure 4.3.1 Water levels and flows observed and available at the least frequency at a few
representative stations

Figure 4.3.2 Ten-daily river flows of the year as seen against Ten-daily frequency curves for
certain base period. This could be given for few representative  river gauging
stations

Figure 4.3.3 Flow duration curve for the year under consideration together with the Average
duration curve for a certain base period. These curves obtained from daily data
could be quite informative of the duration for which certain flow is maintained.
This also could be given for few representative stations.

Table 4.3.1 Daily runoff data and associated monthly and yearly statistics. This table needs to
be given in the main text for only few representative stations and not all the
stations in the network. Similar tables for all the stations are however to be
included in the Appendices to the yearbook. These appendices need to be
printed only in required quantity and not in bulk as mentioned in the introduction.
The appendices will be available as soft copy in the electronic yearbook form.
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Station: Konta

Station: Mancherial

Station: Pathagudem

Station: Polawaram

Figure 4.3.1:   Hourly water levels and flows during the year at observation stations
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Figure 4.3.2: Ten-daily flows in a river as seen against frequency curves (based on 1970-2000 period)

Figure 4.3.3:  Average flow duration curve for daily flows in a river (based on 1970-2000 period)

Daily Flow Duration Curve for Year 1989 as Compared to Average Duration Curve 
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Table 4.3.1  Daily Mean Flow Data Year - 1976
Station Code: AG000J3
Station Name: Mancherial

District: Adilabad
Units : m³/sec

Independent River : Godavari
Tributary: -

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

103
102
102
100

84.2
87.1
130
125
115
112

86.0
72.0
83.2
91.0
94.0
86.2
85.8
80.0
74.2
68.8
87.4
83.4
69.9
67.2
72.0
70.0
65.3
65.9
66.0
64.1
66.7

69.0
64.5
63.7
51.3
54.2
51.6
50.5
56.0
56.2
59.5
51.3
50.5
50.0
50.7
52.0
48.4
46.1
45.1
44.4
45.5
41.1
41.0
41.0
41.2
39.5
31.7
32.7
32.6
35.0

52.1
54.9
56.3
56.1
56.3
53.1
53.0
51.5
41.8
34.7
34.9
34.7
32.5
36.0
39.0
38.5
35.9
35.4
34.8
32.4
32.0
30.5
31.2
31.1
30.9
27.7
26.4
27.0
25.4
24.2
24.0

23.8
24.7
24.1
24.5
24.4
22.7
21.5
18.5
21.0
21.7
21.0
17.8
16.5
15.3
14.4
14.5
14.8
14.5
16.8
15.6
13.4
12.9
14.5
13.0
13.0
12.0
11.1
10.1
9.2
8.4

7.6
7.5
7.0
6.8
7.8
7.9
7.4
6.2
7.0
6.0
6.7
6.0
6.5
5.8
5.7
6.5
7.9
8.5
8.5
8.5
8.7
8.6
7.0
8.2
6.4
5.4
5.7
6.6
6.3
5.0
6.3

7.6
6.9
6.5
5.8
5.5
4.9
5.2
5.2
5.5
5.5
6.0
6.0
6.6
6.9
7.3
8.1
8.4
7.5
7.9
120
127
165
244
227
182
172
204
173
177
103

90.1
277
411
459
391
453
481
448
537
422
433
528
685
568
441
309
347
356
497
856

5100
8410
8750
5620
3470
2670
2420
2190
2110
1970
2050

1760
1580
1890
1890
3560
4870
4360
4580
3850
3410
3410
3200
2900
2450
1970
1720
1300

763
607

1630
2510
1390

969
836
946

1670
2240
2660
3220
2940
5060

7730
5920

10520
4900
4410
3470
2380
1900
1600
1420
1120

760
609
600
620
575
518
461
435
398
322
310
274
275
236
220
220
195
190
170

154
160
155
141
133
123
129
123
121
115
110
122
132
127
124
120
115
122
121
117
105
101

95.0
90.0
90.0
91.4
90.9
89.8
87.5
84.0
85.0

81.9
80.7
78.8
76.0
74.3
73.9
80.0
74.1
83.4
72.8
63.0
62.2
61.2
60.0
57.5
60.0
56.3
56.2
53.9
64.8
78.0
65.0
61.3
61.8
63.9
58.4
55.4
50.0
52.9
45.0

48.4
48.0
41.4
47.4
61.0
75.9
76.2
80.6
76.9
78.0
80.9
104
115
103
111

83.1
61.5
47.0
44.5
55.8
42.4
52.6
50.1
44.9
44.5
44.0
43.7
42.7
38.6
38.2
33.8

Min.
Max.
Eff.
Miss.
Mean

64.1
130
31
0

85.9

31.7
69.0

29
0

48.1

24.0
56.3

31
0

37.9

8.4
24.7

30
0

16.9

5.0
8.7
31
0

7.0

4.9
244
30
0

67.4

90.1
8750

31
0

1735.8

607
5060

31
0

2459.6

170
10500

30
0

1760.5

84.0
160
31
0

115.6

45.0
83.4

30
0

65.4

33.8
115
31
0

61.8

Yearly statistics :
Mean : 541.8 Minimum : 4.9

Date : 06/06/1976
Maximum : 10500.0
Date : 03/09/1976

No. of data : 366
No. of missing data : 0
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Table 4.3.2 : Daily Mean Flow Data Year - 1976
Station Code: AG000S9
Station Name: Dhalegaon

District: Parbhani
Units : m³/sec

Independent River : Godavari
Tributary: -

Day Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

2.4
25.2
22.9
21.8
22.7
22.6
22.0
20.5
22.0
20.8
20.0
20.7
21.4
20.0
19.6
19.6
21.3
20.6
21.1
19.0
19.4
20.3
18.9
19.6
19.0
19.0
21.2
20.7
21.0
18.8
20.6

18.6
19.6
20.6
18.5
19.2
17.5
18.6
18.6
17.2
18.2
18.6
18.8
20.0
21.3
21.4
20.8
19.5
19.7
19.2
20.3
15.8
13.4
10.5
9.6
7.9
7.9
6.8
5.2

14.8

20.2
22.9
18.9
10.9
8.0

12.2
14.4
15.6
16.4
17.1
14.3
17.6
16.0
9.6
8.1
6.0
5.0
4.2
3.4
3.6
3.4
3.3
3.0
2.6
2.9
2.7
2.6
2.4
2.2
2.2
2.2

2.2
2.3
3.0
2.8
3.2
2.9
2.6
2.3
2.0
1.8
2.0
2.0
2.0
1.8
1.6
1.8
1.6
1.6
1.4
1.3
1.2
1.2
1.2
1.3
1.2
1.4
1.1
1.0
1.0
1.0

1.1
0.9
0.9
0.8
0.8
0.8
0.8
0.6
0.6
0.6
0.5
0.6
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.4
0.4
0.4
0.4
0.3
0.4
0.4
0.4
0.4
0.4
0.5

0.4
0.4
0.5
0.5
0.5
0.8
1.4
1.6
1.5
1.8
270
372
384
365
332
300
246
229
191
194
161
267
127
132
126
158
121
222
200
198

247
239
199
181
176
231
230
242
164
134
110
109
100

87.1
31.7
28.3
669
794
776

1400
2380
2350
1200
1220
1520
1430
1200

842
686
533
493

756
2550
3760
4580
4050
3240
2830
3290
2840
2520
2030
1400
1050

228
100

50.8
41.0
36.3
30.5
30.4
34.1
40.0
28.9
30.0
198
171
125
361
702
438
267

223
286
124
141
125

89.8
66.7
47.0
54.1
49.3
71.0
55.0
44.7
43.3
46.5
43.3
44.7
33.8
40.0
29.9
28.0
27.9
29.4
33.2
31.0
58.0
22.6
25.0
23.9
22.2

19.3
57.7
50.0
64.3
44.1
27.6
22.2
21.6
20.8
20.0
15.4
17.3
18.0
16.6
16.6
17.4
17.0
15.4
16.4
14.8
15.9
15.0
14.0
12.0
12.5
10.4
11.0
10.6
9.6

11.5
14.0

11.7
11.2
12.0
10.3
10.3
10.1
15.0
14.7
13.5
13.0
13.4
12.9
12.3
12.0
11.3
11.1
10.3
9.8
9.8

11.7
15.0
21.8
30.3
24.2
20.8
19.6
18.2
16.0
15.1
13.8

13.6
12.5
13.5
11.9
12.2
9.8

12.1
11.7
13.4
15.2
12.4
11.3
11.8
11.9
11.6
12.2
14.2
11.8
11.3
13.0
15.0
13.0
11.2
14.4
11.7
10.7
11.6
11.3
11.8
11.2
11.1

Min.
Max.
Eff.
Miss.
Mean

18.8
25.2

31
0

20.8

5.2
21.4

29
0

16.5

2.2
22.9

31
0

8.8

1.0
3.2
30
0

1.8

0.3
1.1
31
0

0.6

0.4
384
30
0

153.8

28.3
2380

31
0

646.8

28.9
4580

31
0

1222.2

22.2
286
30
0

65.4

9.6
64.3

31
0

20.9

9.8
30.3

30
0

14.4

9.8
15.2

31
0

12.3

Yearly statistics :
Mean : 184.3 Minimum : 0.3

Date : 25/05/1976
Maximum : 4580.0
Date : 04/08/1976

No. of data : 366
No. of missing data : 0
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4.4 Surface water quality

<In order to present the water quantity and quality information in an integrated manner for the user it
will be appropriate to include all water quality related summaries, figures and tables as given
hereunder, in continuation of the other aspects of the hydrological processes.

On the basis of the sampling and analysis program for any river basin, a summary could be drawn. As
an example for an agency that is monitoring only major ions, looking into the data obtained during the
reporting period the following inferences are drawn. Hereunder, some inferences for Godawari river
are put only as an illustrative example:

• The water of river is generally alkaline in nature mainly due to the presence of bicarbonate.
Carbonates were present in the samples of the Godavari river collected from Nashik, Nanded,
Mancherial, Bhadrachalam and Pollavaram.

• The conductivity varies between 300 µmhos/cm (Nashik Upstream) to 2000 µmhos/cm
(Polavaram).

• Among cations calcium, magnesium and sodium were dominating. Potassium is always low.
Maximum calcium (600 mg/L) was observed in Polavaram. Aluminium, iron and ammoniacal
nitrogen were present in very small quantity. In general the cations are present in permissible
limits of drinking water or irrigation standards of BIS.

• The chloride was the dominant anion followed by bicarbonate and sulphate. The maximum
chloride (1000 mg/L) was recorded from Polavaram and bicarbonate (8,000 mg/L) from
Polavaram. Silicates were present in significant concentration at all the stations. Nitrates,
fluorides and phosphates were present in low concentrations at all the stations throughout the
year. In general the anions were within the permissible limit of drinking and irrigation
requirements of the Bureau of Indian Standards (BIS).

• Dissolved oxygen was generally at saturation level at all the monitoring stations except the
stretch between Nashik to Nanded, where DO was observed as low as zero on many occasions,
which may be due to effect of discharge of untreated domestic sewage from Nashik,
Aurangabad, Nanded.

• Water quality indices viz. Sodium adsorption ratio (SAR), sodium percentage (%Na) and residual
sodium carbonate (RSC) were found within tolerance limits of irrigation standards at all the
stations. From salinity classification point of view,the river waters of the basin generally fall under
C1S1 and C3S1 classification as per US Salinity diagram.
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Overview of water quality for different stations

Station: POLAVARAM

Figure: 4.4.1: Major cations for station Polavaram in the year 1997
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Station: POLAVARAM

Figure 4.4.2: Major anions for station Polavaram in the year 1997

 Templates for several parameter groups are available in HYMOS (major cations and
anions, general and pollution related parameters), this way Figure 4.4.1 and 4.4.2 can be
generated automatically for a desired number of stations best representing a river stretch
or a basin.

Comparing with standards

The CPCB results which contain some of the parameters related to major water quality issues of the
river were analysed (Table 7). The main findings are presented as follows:

The Godavari river basin is a relatively clean river in the country.

The major water quality problem in the river basin is mainly due to presence of coliform. A large
number of stations are showing coliform values higher than the desired limits identified under
“designated best use” criteria of CPCB.
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 The water quality results for the year of interest are compared to water quality standards
after summarising the time-series over the year (or season). Normally the 90 percentile
value (10% for DO) is used for comparison with standards such as given in Table 4.4.1.

Table 4.4.1: Station-wise water quality
problems according to the
CPCB classification
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Trends in water quality

A time series plot for BOD (3years period i.e. from 1996 to 1998), all dates and annual average is
plotted as shown in Table 4.4.2 and Figure 4.4.3 below. As reveal from the graph BOD values up to
1997 was vary between 0.1 and 1.1 mg/L with an average of 0.45 mg/L. The observed increase of the
maximum and average value in 1998, 1.4 and 0.67 mg/L respectively are very small compared tot the
large spread of the data, caused by the sharp decrease in the number of observation in 1998. The
data do therefore not indicate an significant increase in BOD at this station.

 A similar plot as presented in Figure 2 may be included for longitudinal analysis of a river
or river stretch: different monitoring stations are presented on the horizontal axis the
graph.

Figure 4.4.3: Box-whisker graph for BOD at station Polavaram

Year 1995 1996 1997 1998 1999 2000

Max - 1.000 1.100 1.400 - -

Mean - 0.444 0.463 0.667 - -

Min - 0.200 0.100 0.200 - -

Median - 0.400 0.400 0.500 - -

10% - 0.200 0.200 0.200 - -

25% - 0.200 0.300 0.200 - -

75% - 0.600 0.600 1.200 - -

90% - 0.900 0.800 1.400 - -

No. data 0 32 32 6 0 0

Table 4.4.2: Yearly time-series for summary statistics for BOD at station Polavaram
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Results of Surveillance Monitoring

Surveillance monitoring will/may not be conducted at the same locations or for the same parameters
from year to year. Thus presentation of these results needs to be separate from the above items.
Since surveillance monitoring is conducted for problem issues, it is assumed that the results of these
studies are relevant for a yearbook. Surveillance monitoring likely will be for pollution parameters such
as (e.g. coliforms, heavy metals, pesticides, organic pollutants, ammonia).

 Include a map showing location(s) monitored

 Time series plots for 1 year, for the WQ parameters included in the surveillance. The water
quality standard must be represented as a horizontal line.

 Comparison of stations for the period of monitoring.

5 Interpretation of various statistics presented in the yearbook

<It is very important to explain to the readers what the various statistics that are used
in the yearbook mean. Some such important terms that need to be explained are as
follows;

5.1 Daily rainfall – What time frame does daily rainfall refers to.

5.2 Mean Daily Runoff – How is the mean daily runoff computed.>

6 Options for users for receiving data from the Data Centres

<Now that the dissemination of hydrological data would become very efficient and user-friendly for the
data users, it will be useful to give wider publicity to the data retrieval options available to the users.
Few aspects which could be put as brief note for this purpose are:

6.1 What major types of hydrological data and information is available in
HIS

6.2 What is the extent of data availability in terms of number of stations,
length of data on different data types and overall volume of data. This
would also incidentally give the

6.3 How a user can request for the data

6.4 What would be the cost of data

6.5 Who would qualify as eligible data users and could get data.>
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7 Previous publications of water yearbooks

<It is very important to include a sort of bibliography on the water yearbooks published in the past,
highlighting the salient features or the major changes that were introduced from time to time. Such
note enlisting what has been published so far by the agency would become a ready reference to
anybody seeking to know what type of information is available on hydrological data and how it could
be approached for.>
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ANNEX II:

STATISTICAL ANALYSIS
WITH REFERENCE

TO
RAINFALL AND DISCHARGE DATA
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1 Introduction

Terminology

A hydrologic process is defined as any phenomenon concerning the occurrence and movement of
water near the earth’s surface continuously changing in time and/or space. If these phenomena are
observed at intervals or continuously, discrete, respectively, continuous series are created, → with
time: discrete and continuous time series. One single series element is an outcome of the process. A
set of outcomes is called a realisation, while the set of all possible outcomes is the ensemble.

The variation within hydrological processes may be deterministic or stochastic. In a deterministic
process a definite relation exists between the hydrologic variable and time (or space). The functional
equation defines the process for the entire time (or space) of its existence. Each successive
observation does not represent new information about the process. This, in contrast to a stochastic
process, which evolves, entirely or in part, according to a random mechanism. It means that future
outcomes of the process are not exactly predictable. The hydrologic variable in such cases is called a
stochastic variable, i.e. a variable whose values are governed by the laws of chance. Its behaviour
is mathematically described by probability theory.

The elements, creating a stochastic process, may be dependent or independent, resulting in a non-
pure random, respectively, a pure random process.

A stochastic process can either be stationary or non-stationary, i.e. homogeneous or non-
homogeneous in time and/or space. Stationary processes are distinguished into strictly and weakly
stationary processes.

A process is said to be strictly stationary if all its statistical properties which characterise the
process, are unaffected by a change in the origin (time and or space). For a time-process this reads:
the joint probability distribution of x(t1), x(t2), …, x(tn) is identical to the joint probability distribution of
x(t1+τ), x(t2+τ), …, x(tn+τ) for any n and τ, where τ is a time lag. If instead of the joint probability
density function only the first m-moments of that function are independent of time (space) the process
is called mth order stationary.

Weak stationarity means that only the lower order moments of the distribution function (order ≤ 2, i.e.
the mean and the covariance function) fulfil the property of being independent of time. This is also
called stationarity in a wide sense. (Note that the terminology stationary/non-stationary is used when
dealing with homogeneity or non-homogeneity in time).

In practice only a limited set of outcomes, a limited series, is available. Based on this sample set the
behaviour of the process is estimated: sample versus population. The elements in a hydrological
series may be analysed according to rank of magnitude and according to the sequence of
occurrence. Ranking of elements forms the basis of statistics, the classical frequency analysis,
thereby ignoring the order of occurrence. In contrast to ranking, the study of the sequence of
occurrence presumes that past outcomes of the process may influence the magnitude of the present
and the future outcomes. Hence the dependency between successive elements in the series is not
ignored: time series analysis.



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 228

About this module

In this module a review is presented of statistics as applied to hydrology to analyse e.g. rainfall or
discharge data. With statistics one describes rather than explains features of hydrological processes.
Statements are made based on a sample from the entire population of the hydrological variable of
concern. With statistics one describes variables only in probabilistic terms for reasons that the cause
and effect relation of the physical process is insufficiently known and also because our description is
based on a small part of the entire range of outcomes on the variable.

Statistics provides powerful tools to describe hydrological variables, but one should apply it with care.
An important condition the series to be subjected to statistical analysis should fulfil is stationarity. To
judge whether this condition is fulfilled, knowledge is required of the nature of the hydrological
variable(s) of concern. The following components are generally distinguished in hydrological time
series, see also Figure 1.1:

• Deterministic components, including:

− Transient component, due to natural or man made changes, which can be a jump, in case
of a sudden change in the conditions or a trend, linear or non-linear, due to a gradual
change

− Periodic component, e.g. due to the annual solar cycle

• Stochastic component:

− Stochastic dependent part, where the new value is related to one or more predecessors,
e.g. due to storage effects

− Stochastic independent or random part.

Figure 1.1: Components of a hydrological time series

Figure 1.1 displays a monthly time series, with a clear linear trend and a strong periodic component,
repeating itself every year. It will be clear that a series as shown in Figure 1.1 does not fulfil the
stationarity condition, the mean value gradually shifts due to the trend. Even with the trend removed
the probability distribution changes from month to month due to the existence of the periodic
component, again not fulfilling the stationarity condition. If one also eliminates the periodic component
in the mean value a process with a stationary mean value is obtained, but still this may not be
sufficient as generally also second or higher order moments (variance, covariance, etc.) show
periodicity. Therefore, hydrological time series
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with time intervals less than a year should not be subjected to statistical analysis. Annual values
generally do not have the problem of periodicity (unless spectral analysis shows otherwise due to
some over-annual effect) and are fit for statistical analysis, provided that transient components are not
present or have been eliminated.

Now, returning to our monthly series, periodicity is avoided if the months are considered separately,
that is e.g. if only the values of July of successive years are considered. Similarly, if seasonal series
are available, one should consider one season at a time for statistical analysis, i.e. the same season
for a number of years.

To illustrate the above considerations monthly rainfall and its statistics of station Chaskman are
shown in Figures 1.2 and 1.3. As can be observed from Figure 1.3, there is a strong periodic
component in the time series; the mean and standard deviation vary considerably from month to
month.

Figure 1.2: 3-D plot of monthly rainfall of station Chaskman

If one would combine the rainfall values of all months one assumes that their probability distribution is
the same, which is clearly not so. To fulfil the stationarity condition, statistics is to be applied to each
month separately, see Figure 1.2

A series composed of data of a particular month or season in successive years is likely to be serially
uncorrelated, unless over-annual effects are existent. Hence, such series will be fully random. Similar
observations apply to annual maximum series. It implies that the time sequence of the series
considered is unimportant. Above considerations are typical for statistical analysis.

In this module statistics is discussed and the following topics will be dealt with:

• Description of data sets

• Probabilistic concepts

• Discrete and continuous probability distributions

• Estimation of distribution parameters

• Making statistical inference
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Figure 1.3: Mean and standard deviation of monthly rainfall series of station
Chaskman, period 1977 - 1998

2 Description of Datasets

2.1 General

In this sub-section on basic statistics attention will be given to:

• Graphical presentation of data

• Measures of central tendency

• Measures of dispersion

• Measure of asymmetry: skewness

• Measure of peakedness: kurtosis

• Percentiles

• Box plots

• Covariance and correlation coefficient

2.2 Graphical representation

For graphical presentation of the distribution of data the following options are discussed:

• Line diagram or bar chart

• Histogram

• Cumulative relative frequency diagram

• Frequency and duration curves

Note: prior to the presentation of data in whatever frequency oriented graph, it is essential to make a
time series plot of the data to make sure that a strong trend or any other type of inhomogeneity, which
would invalidate the use of such presentation, does not exist.
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Line Diagram or Bar Chart

The occurrences of a discrete variate can be classified on a line diagram or a vertical bar chart. In
this type of graph, the horizontal axis gives the values of the discrete variable, and the occurrences
are represented by the heights of vertical lines. The horizontal spread of these lines and their relative
heights indicate the variability and other characteristics of the data. An example is given in Figure 2.1,
where the number of occurrences that in one year the monthly rainfall at Chaskman will exceed 100
mm is presented. The period presented refers to the years 1978 – 1997.

Figure 2.1:
Line diagram of number of months in a
year with rainfall sum > 100 mm for period
1978 - 1997

If the number of entries on the horizontal axis would have been small, it means that the variability in
the number of months in a year with P > 100 mm is small.

Histogram

If the range of outcomes on the variable is becoming large, then the line diagram is not an appropriate
tool anymore to present the distribution of the variable. Grouping of data into classes and displaying
the number of occurrences in each class to form a histogram will then provide better insight, see
Figure 2.2. By doing so information is lost on the exact values of the variable, but the distribution is
made visible. The variability of the data is shown by the horizontal spread of the blocks, and the most
common values are found in blocks with the largest areas. Other features such as the symmetry of
the data or lack of it are also shown. At least some 25 observations are required to make a histogram.

An important aspect of making a histogram is the selection of the number of classes nc and of the
class limits. The following steps are involved in preparing a histogram:

• The number of classes is determined by one of the following options (see e.g. Kottegoda and
Rosso (1997):

          (2.1)

          (2.2)

where: nc = number of classes

n = number of observations

R = range of observations: Xmax – Xmin
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Riq = interquartile range, defined by: Riq = Mup – Mlow

 Mup = median of highest 50% of the data, i.e. 75% of the data is less

Mlow = median of lowest 50% of the data, i.e. 25% of the data is less

• To obtain rounded numbers for the class limits convenient lower and upper limits below Xmin and
above Xmax respectively the lowest and highest value have to be selected.

• Count the occurrences within each class: class frequency

• Present the results in a histogram

Figure 2.2: Histogram and cumulative relative frequency diagram of monthly rainfall
at Chaskman, months June-September, period 1977 – 1997.

The application is shown for monthly rainfall of Chaskman. From Figure 1.2 it is observed, that rainfall
in the months June to September behave more or less like a homogeneous group of data. A
histogram is made of these monthly values for the years 1977-1997, i.e. 21 years of data. Hence in
total the data set comprises 21 x 4 = 84 data points. The data are ranked in ascending order and
displayed in Table 2.1

1 2 3 4 5 6 7 8 9

1 12.1 55.4 71.8 92.8 118.1 152.2 196.3 229.0 326.2

2 19.6 55.8 72.2 97.8 124.8 154.4 201.2 234.6 342.6

3 20.8 55.8 74.8 100.2 127.2 158.0 202.8 237.2 404.6

4 26.6 61.2 75.4 101.4 128.0 160.2 206.4 258.0 418.7

5 35.4 61.8 75.8 101.4 130.2 161.0 207.0 258.8

6 37.2 62.8 76.6 103.0 132.8 166.8 221.2 268.2

7 48.8 64.6 77.4 103.8 136.0 169.2 221.4 268.4

8 52.4 65.0 77.6 105.2 136.6 172.8 225.7 281.4

9 52.8 65.6 78.9 105.7 144.0 188.0 227.6 281.8

10 53.4 69.8 87.2 112.4 148.0 193.4 228.4 282.3

MONTHLY RAINFALL CHASKMAN, JUN-SEP 1977-1997

Frequency R elative Frequency

Rainfall (m m )
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June-September monthly rainfall at
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The values for Xmin and Xmax are respectively 12.1 mm and 418.7 mm, hence for the range it follows R
= 418.7 – 12.1 = 406.6 mm. Since 84 data points are available 42 data are available in the lowest as
well as in the highest group, so the values at positions 21 and 63 in the sorted data vector will give the
medians for the lowest and highest 50% of the data Mlow and Mup. These values are respectively 71.8
mm and 202.8 mm, hence the interquartile range is Riq = 202.8 – 71.8 = 131.0 mm. According to (2.1)
the number of classes in the histogram should be

Now, with 7 classes, R = 406.6 mm a class interval should be ≥ R/7 ≈ 58 mm, which is rounded to 60
mm. Using this class-interval and since Xmin = 12.1 mm and Xmax = 418.7 mm appropriate overall
lower and upper class limits would be 0 mm and 420 mm. The result is displayed in Figure 2.2. The
data points in a class are > the lower class limit and ≤ the upper class limit, with the exception of the
lowest class, where the lowest value may be = lower class limit.

Note that if one uses (2.1) the result would have been √84 ≈ 9 classes, which is a slightly higher
value. It follows that the guidelines given in (2.1) and (2.2) are indicative rather than compulsory. In
general, at least 5 and at maximum 25 classes are advocated. Equation (2.2) has preference over
equation (2.1) as it adapts its number of classes dependent on the peakedness of the distribution. If
the histogram is strongly peaked then the inter-quantile range will be small. Consequently, the
number of classes will increase, giving a better picture of the peaked zone.

Cumulative Relative Frequency Diagram

By dividing the frequency in each class of the histogram by the total number of data, the relative
frequency diagram is obtained. By accumulating the relative frequencies, starting off from the lower
limit of the lowest class up to the upper limit of the highest class the cumulative relative frequency
diagram is obtained. For the data considered in the above example, the cumulative relative frequency
diagram is shown with the histogram in Figure 2.2. The computational procedure is shown in Table
2.2.

Class LCL UCL Freq. Rel.
Freq.

Cum.R.
Fr.

1 0 60 13 0.155 0.155

2 60 120 28 0.333 0.488

3 120 180 17 0.202 0.690

4 180 240 15 0.179 0.869

5 240 300 7 0.083 0.952

6 300 360 2 0.024 0.976

7 360 420 2 0.024 1.000

On the vertical axis of the graph, this line gives 
on the horizontal axis. Instead of deriving this plo
and displaying every item of data distinctly. Fo
ascending order. The cumulative frequency given
there are m data points less than or equal to the d

78.6
0.131x2

)84(x6.406

R2

nR
n

3/1

iq

3

c ≈===
Table 2.2:
Computation of cumulative relative frequencies
uary 2003 Page 233

the cumulative relative frequencies of values shown
t via the histogram, generally it is made by utilising
r this purpose, one ranks the series of size N in
 to the observation at rank m then becomes m/N, i.e.
ata point at rank m. This is shown in Figure 2.3.



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 234

Figure 2.3:
Cumulative relative frequency
distribution for Chaskman June–
September data in the period
1977-1997

In Figure 2.3 the highest ranked data point (m = N) gets a cumulative relative frequency of m/N = N/N
= 1. To describe the distribution of the data in that particular sample series this statement is correct.
No observation exceeded the maximum value. However, in statistics one wants to say something
about the distribution of data in the population of which the N observations are just one of many
possible samples series. The cumulative relative frequency (crf) is then replaced by the non-
exceedance probability. A non-exceedance probability of 1 for the maximum observed in the sample
series would then imply that all possible outcomes would be less than or equal to that maximum.
Unless there is a physical limit to the data such a statement is not justified. The non-exceedance
probability of the maximum in the sample series will be less than 1. The non-exceedance probability
to be given to the data point with rank m can be determined by viewing the series of ranked
observations as order statistics: X(1), X(2), X(3), …,,X(m),…X(N). The expected value of order
statistic X(m) depends first of all on the rank of X(m) relative to X(N). Furthermore is the expected
value of X(m) a function of the probability distribution of the process from which the sample points are
drawn. This will be discussed in more detail in Section 4.

Frequency Curves

Considering again the monthly rainfall series of Chaskman, for each month one can make a
cumulative frequency distribution. Distinct crf’s are the identified, say e.g. 10%, 50% and 90%, for
each month. By displaying the rainfall having say a crf = 10% for all months in the year in a graph a
frequency curve is obtained. Similarly for other crf’s such a curve can be made. This is shown in
Figure 2.4.

Figure 2.4:
Frequency curves of
monthly rainfall at station
Chaskman, period 1968-
1997
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The computational procedure to arrive at the frequency curves is presented in the Tables 2.3 and 2.4.
In Table 2.3 the actual monthly rainfall for a 30-year period is displayed. Next, the data for each
month are put in ascending order, see Table 2.4, with the accompanying crf presented in the first
column. The rows with crf = 0.1 (10%), 0.5 (50%) and 0.9 (90%) are highlighted and displayed in
Figure 2.4.

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

1968 0 0 0 0 0 49.8 144.3 60.5 162.1 43.4 47 0 507.1

1969 0 0 0 0 0 10.5 320.2 267.1 81.2 0 50.2 0 729.2

1970 0 0 0 0 60.8 80 124.9 140.5 30 162.6 0 0 598.8

1971 0 0 0 0 44.4 159.2 85.4 197.8 212.6 12 0 0 711.4

1972 0 0 0 3.2 31.4 46 229.7 38.3 0 0 0 0 348.6

1973 0 0 8.6 0 25 85 312.6 134.6 109.2 101.6 0 0 776.6

1974 0 0 0 0 132.2 72 150.8 175.2 206.2 183.4 0 0 919.8

1975 0 0 0 0 8 123.2 146.2 139.4 191.8 111.6 0 0 720.2

1976 0 0 0 0 0 494.8 323.8 208.6 115.2 3 139.2 0 1284.6

1977 0 0 0 0 16.4 188 207 61.8 64.6 44.2 119.4 3.6 705

1978 0 12.6 10.4 53 43.4 154.4 77.4 127.2 124.8 32.8 73.6 0.2 709.8

1979 0 0 0 0 21.4 75.4 93.8 252.8 221.4 13.4 57 0 735.2

1980 0 0 1 14.2 1.4 325.8 169.2 192.4 136.6 17.8 57.6 11.8 927.8

1981 10.8 2.2 0 20.6 9.2 152.2 258 101.4 160.2 53 7.4 2.2 777.2

1982 6.4 0 0 0 21.2 101.4 71.8 144 132.8 47.8 39.2 0 564.6

1983 0 0 0 0 4.2 55.8 75.8 418.4 268.2 2.8 0 0 825.2

1984 0 1.8 0 5.2 0 78.9 225.45 55.4 104.2 0 7 0 477.95

1985 0 0 0 0 31.6 62.8 105.7 74.8 26.6 91.3 0 0 392.8

1986 0 0 0 0 26.8 229 87.2 97.8 105.2 5.1 3.6 46.6 601.3

1987 0 0 0 0 80.2 118.1 65 148 12.1 89.4 8 11.9 532.7

1988 0 0 0.4 22.2 0 72.2 268.4 53.4 282.3 18.1 0 0 717

1989 0 0 6.4 1.4 9.2 37.2 227.6 61.2 190.7 7.6 0 0 541.3

1990 13.8 0 0 0 33.2 66.6 212 161.4 32.4 195.8 18 3.2 736.4

1991 0 0 0 16.2 12.8 404.6 235.4 50.2 48.6 21 9.4 0.6 798.8

1992 0 0 0 0 10.6 112.4 102 235.2 202.8 13.8 20 0 696.8

1993 0 0 1 3.8 15.8 130.2 226.4 66.6 53.4 304 7.2 31.6 840

1994 3.8 0 0 11.4 26 169 285.8 92.2 85 130.8 40.6 0 844.6

1995 35.2 0 2.2 17 15.4 20.8 157.8 19.8 262 87.8 2.2 0 620.2

1996 0.6 0 0 29.4 10.2 206.4 221.2 55.8 128 217.4 2.4 0 871.4

1997 5.4 0 0 12.4 10 136 166.8 342.6 77.6 66.3 148.7 41 1006.8

Table 2.3: Monthly and annual rainfall at station Chaskman, period 1968-1997

Crf Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

0.033 0 0 0 0 0 10.5 65 19.8 0 0 0 0 348.6

0.067 0 0 0 0 0 20.8 71.8 38.3 12.1 0 0 0 392.8

0.100 0 0 0 0 0 37.2 75.8 50.2 26.6 0 0 0 478.0

0.133 0 0 0 0 0 46 77.4 53.4 30 2.8 0 0 507.1

0.167 0 0 0 0 0 49.8 85.4 55.4 32.4 3 0 0 532.7

0.200 0 0 0 0 1.4 55.8 87.2 55.8 48.6 5.1 0 0 541.3

0.233 0 0 0 0 4.2 62.8 93.8 60.5 53.4 7.6 0 0 564.6

0.267 0 0 0 0 8 66.6 102 61.2 64.6 12 0 0 598.8

0.300 0 0 0 0 9.2 72 105.7 61.8 77.6 13.4 0 0 601.3

0.333 0 0 0 0 9.2 72.2 124.9 66.6 81.2 13.8 0 0 620.2

0.367 0 0 0 0 10 75.4 144.3 74.8 85 17.8 2.2 0 696.8
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Crf Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year

0.400 0 0 0 0 10.2 78.9 146.2 92.2 104.2 18.1 2.4 0 705.0

0.433 0 0 0 0 10.6 80 150.8 97.8 105.2 21 3.6 0 709.8

0.467 0 0 0 0 12.8 85 157.8 101.4 109.2 32.8 7 0 711.4

0.500 0 0 0 0 15.4 101.4 166.8 127.2 115.2 43.4 7.2 0 717.0

0.533 0 0 0 0 15.8 112.4 169.2 134.6 124.8 44.2 7.4 0 720.2

0.567 0 0 0 0 16.4 118.1 207 139.4 128 47.8 8 0 729.2

0.600 0 0 0 1.4 21.2 123.2 212 140.5 132.8 53 9.4 0 735.2

0.633 0 0 0 3.2 21.4 130.2 221.2 144 136.6 66.3 18 0 736.4

0.667 0 0 0 3.8 25 136 225.45 148 160.2 87.8 20 0 776.6

0.700 0 0 0 5.2 26 152.2 226.4 161.4 162.1 89.4 39.2 0.2 777.2

0.733 0 0 0 11.4 26.8 154.4 227.6 175.2 190.7 91.3 40.6 0.6 798.8

0.767 0 0 0 12.4 31.4 159.2 229.7 192.4 191.8 101.6 47 2.2 825.2

0.800 0.6 0 0.4 14.2 31.6 169 235.4 197.8 202.8 111.6 50.2 3.2 840.0

0.833 3.8 0 1 16.2 33.2 188 258 208.6 206.2 130.8 57 3.6 844.6

0.867 5.4 0 1 17 43.4 206.4 268.4 235.2 212.6 162.6 57.6 11.8 871.4

0.900 6.4 0 2.2 20.6 44.4 229 285.8 252.8 221.4 183.4 73.6 11.9 919.8

0.933 10.8 1.8 6.4 22.2 60.8 325.8 312.6 267.1 262 195.8 119.4 31.6 927.8

0.967 13.8 2.2 8.6 29.4 80.2 404.6 320.2 342.6 268.2 217.4 139.2 41 1006.8

1.000 35.2 12.6 10.4 53 132.2 494.8 323.8 418.4 282.3 304 148.7 46.6 1284.6

Table 2.4: Monthly and annual rainfall at station Chaskman, period 1968-1997
 ordered in ascending order per column

By plotting the rainfall of a particular year with the frequency curves one has a proper means to
assess how the rainfall in each month in that particular year behaved compared to the long term
rainfall in that month. However, the say 10% curve should not be considered as a 10%-wet year. To
show this in the last column of Table 2.4 the ranked annual values are presented as well. The rainfall
in 10%-wet year amounts 478 mm, whereas the sum of the 10% monthly rainfall amounts add up to
189.8 mm only. Similar conclusions can be drawn for other crf’s. This is shown in Figure 2.5 a, b, c.
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Figure 2.5b

Figure 2.5c

Figure 2.5 a, b, c: Frequency curves of crf = 10, 50 and
90% with 10%, 50% and 90% wet year records.

In the above text frequency curves were discussed for monthly rainfall data. Basically, the technique
can be applied to any hydrological variable and the interval may also be day, 10 days, season, etc.
Generally, say, we have M observations in a year for N years. Let the observation on the hydrological
variable in interval m in year n be denoted by Xm,n. Then for n = 1, N the Xm’s are put in ascending
order: Xm,k, where k is the rank of Xm,n, with k running from 1 to N. De crf attributed to Xm,n is k/N (or
k/(N+1) or some other estimate for the probability of non-exceedance as discussed earlier). By
selecting a specific value for k = k1 corresponding to a required crf the sequence of Xm,k1 for m = 1,M
will give us the required frequency curve. In case a required crf, for which a frequency curve is to be
made, does not correspond with the kth rank in the sequence of N values, linear interpolation between
surrounding values is to be applied.

Duration Curves

For the assessment of water resources, navigational depths, etc. it may be useful to draw duration
curves. When dealing with flows in rivers, this type of graphs is known as a flow duration curve. It is in
effect a cumulative frequency diagram with specific time scales. On the horizontal axis the percentage
of time or the number of days/months per year or season during which the flow is not exceeded may
be given. The volume of flow per day/month or flow intensity is given on the vertical axis. (The above
convention is the display adopted in HYMOS; others interchange the horizontal and vertical axis.)
Similarly, duration curves may be developed for any other type of variable. In Figure 2.6 the duration
curve for the monthly rainfall at Chaskman for the period 1968-1997 is presented.

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
ai

n
fa

ll 
(m

m
)

10%

50%

90%

1988 (medium)

0

50

100

150

200

250

300

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

R
ai

n
fa

ll 
(m

m
)

10%

50%

90%

1974 (wet)



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 238

Figure 2.6 tells us that there is no rain during at least four months in a year, and on average there is
only one month in a year with a monthly total larger than 200 mm. However, from Table 2.3 it can be
observed that during 8 years out of 30 the 200 mm threshold was exceeded during two months. So
the curve only displays average characteristics. The curve is obtained by multiplying the cumulative
relative frequency associated with an observation with the number of intervals one has considered in
a year or a season.

Figure 2.6:
Duration curve of monthly rainfall
for station Chaskman

2.3 Measures of Central Tendency

Measures of the central tendency of a series of observations are:

• Mean

• Median

• Mode

Mean

The mean of a sample of size N is defined by

         (2.3)

where xi = individual observed value in the sample

N = sample size i.e. total number of observed values

m = mean of the sample size n.

When dealing with catchment rainfall determined by Thiessen method, the mean is weighted
according to the areas enclosed by bisectors around each station. The sum of the weights is 1:

          (2.4)
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Median

The median M of a sample is the middle value of the ranked sample, if N is odd. If N is even it is the
average of the two middle values. The cumulative relative frequency of the median is 0.5. For a
symmetrical distribution the mean and the median are similar. If the distribution is skewed to the right,
then M < m, and when skewed to the left M > m.

Mode

The mode of a sample is the most frequently occurring value and hence corresponds with the value
for which the distribution function is maximum. In Figure 2.2 the mode is in the class 60-120 mm and
can be estimated as 90 mm.

2.4 Measures of Dispersion

Common measures of dispersion are:

• the range,

• the variance,

• the standard deviation, and

• coefficient of variation.

Range

The range of a sample is the difference between the largest and smallest sample value. Since the
sample range is a function of only two of the N sample values it contains no information about the
distribution of the data between the minimum and maximum value. The population range of a
hydrological variable is in many cases, the interval from 0 to ∞, and as such displays no information
about the process.

In hydrology the word ‘range’ is also used to quantify the range of accumulative departures from the
mean (also indicated as partial sums). That value has important implications when dealing with water
storage. It is a measure for the required storage when the average flow is to be drawn from a
reservoir.

Variance

The most common measure of dispersion used in statistical analysis is the variance, estimated by s2:

          (2.5)

The reason for using the divisor N-1 instead of N is that it will result in an unbiased estimate for the
variance. The units of the variance are the same as the units of x2.

Standard deviation

The standard deviation s is the root of the variance and provides as such a measure for the
dispersion of the data in the sample set in the same dimension as the sample data. It is estimated by:

          (2.6)
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Coefficient of Variation

A dimensionless measure of dispersion is the coefficient of variation Cv defined as the standard
deviation divided by the mean:

          (2.7)

Note that when m = 0 the coefficient of variation Cv becomes undefined; hence for normalised
distributions this measure cannot be applied.

From Figure 1.3 it is observed that the coefficient of variation of the monthly rainfall at Chaskman is >
1 for the dry period, but < 1 during the monsoon.

2.5 Measure of Symmetry: Skewness

Distributions of hydrological variables are often skewed, i.e. non-symmetrical. The distributions are
generally skewed to the right, like daily rainfall. By aggregation of data, the distribution of the
aggregate will approach normality, i.e. will become symmetrical. Positively and negatively skewed
distributions and symmetrical distributions are shown in Figure 2.7.

Figure 2.7:
Examples of symmetrical and positively and
negatively skewed distributions, with locations of
mean, median and mode

The skewness is derived from the third central moment of the distribution, scaled by the standard
deviation to the power 3. An unbiased estimate for the coefficient of skewness can be obtained from
the following expression:

          (2.8)

In Figure 2.7 the relative position of the mean, median and mode for symmetrical and positively and
negatively skewed distributions is presented.
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2.6 Measure of Peakedness: Kurtosis

Kurtosis refers to the extent of peakedness or flatness of a probability distribution in comparison with
the normal distribution, see Figure 2.8. The sample estimate for kurtosis is:

          (2.9)

The kurtosis is seen to be the 4th moment of the distribution about the mean, scaled by the 4th power
of the standard deviation. The kurtosis for a normal distribution is 3. The normal distribution is said to
be mesokurtic. If a distribution has a relatively greater concentration of probability near the mean
than does the normal, the kurtosis will be greater than 3 and the distribution is said to be leptokurtic.
If a distribution has a relatively smaller concentration of a probability near the mean than does the
normal, the kurtosis will be less than 3 and the distribution is said to be platykurtic.

Figure 2.8:
Illustration of Kurtosis

The coefficient of excess e is defined as g2 – 3. Therefore for a normal distribution e is 0, for a
leptokurtic distribution e is positive and for a platykurtic distribution e is negative.

2.7 Quantiles, percentile, deciles and quartiles

The cumulative relative frequency axis of the cumulative relative frequency curve running from 0 to 1
or from 0 to 100% can be split into equal parts. Generally, if the division is in n equal parts, one will
generate (n-1) quantiles. The pth quantile, xp, is the value that is larger than 100p% of all data.
When n = 100, i.e. the division is done in 100 equal parts (percents), then the value of the
hydrological variable read from the x-axis corresponding with a crf of p% is called the pth percentile. If
the frequency axis is divided into 10 equal parts then the corresponding value on the x-axis is called a
decile. Thus the 10th percentile (also called the first decile) would mean that 10% of the observed
values are less than or equal to the percentile. Conversely, the 90th percentile (or 9th decile) would
mean that 90% of the observed values are lying below that or 10% of the observed values are lying
above that. The median would be the 50th percentile (or fifth decile). Similarly, if the frequency axis is
divided in 4 equal parts then one speaks of quartiles. The first quartile corresponds with the 25th

percentile, i.e. 25% of the values are less or equal than the first quartile; the second quartile is equal
to the median and the third quartile equals the 75th percentile.

2.8 Box plot and box and whiskers plot

A box plot displays the three quartiles of a distribution in the form of a box, see Figure 2.9. If in
addition also the minimum and the maximum values are displayed by bars extending the box on
either side, the plot is called a box and whiskers plot. Sometimes also the mean is indicated in the
plot. Hence the plot is a 5 or 6 points summary of the actual frequency distribution. Such plots are
made for the data in a season or a year or any other selected time interval.
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Figure 2.9:
Features of a box and whiskers
plot

By displaying the box and bars for successive years a quick insight is provided into the variation of the
process from year to year. This form is very popular for displaying the behaviour of water quality
variables. For that purpose the plot is extended with threshold values on a particular water quality
variable.

In Figure 2.10 an example is given of a box and whiskers plot applied to discharge measurements at
station Rakshewa in Bhima basin, where the statistics of the measurements from 1995 to 1998 are
shown for each year separately.

Figure 2.10: Box and
whiskers plot of discharge
measurements at station
Rakshewa in Bhima basin,
period 1995 – 1998.

It is clearly observed from the boxes and bars in Figure 2.10 that the distribution of the measured
discharges in a year is skewed to the right. Generally, a large number of discharge measurements are
available for the very low stages and only a few for the higher stages. Hence the extent of the box
(which comprises 50% of the measurements) is very small compared to the range of the data. The
mean is seen to be always larger than the median.
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2.9 Covariance and Correlation Coefficient

When simultaneous observations on hydrological variables are available then one may be interested
in the linear association between the variables. This is expressed by the covariance and correlation
coefficient.

If there are N pairs of observations (x1, y1), (x2, y2), …, (xN, yN), of two variables X and Y, the sample
covariance is obtained from the following expression:

        (2.10)

where: mX, mY = sample means of X and Y respectively:

The correlation coefficient rXY is obtained by scaling the covariance by the standard deviations of X
and Y:

        (2.11)

where: sX , sY = sample standard deviations of X and Y.

To get the limits of rXY consider the case that X and Y have a perfect linear correlation. Then the
relationship between X and Y is given by :

Y = a + bX

and hence:

mY = a + bmX and: sY
2= b2sX

2 or:    sY = |b|sX

Substituting above relations in (2.11) gives:

        (2.12)

If Y increases for increasing X, i.e. they are positively correlated, then b > 0 and rXY is seen to be 1. If
on the other hand Y decreases when X is increasing, they are negatively correlated; then b < 0 and
rXY is –1. So rXY is seen to vary between ±1:

–1 ≤ rXY ≤ 1.

If there is no linear association between X and Y then rXY is 0. If rXY is 0 it does not mean that X and Y
are independent or that there is no association between X and Y. It only means that the linear
association is not existing. Still, there may be for example a circular association.

A convenient means to investigate the existence of linear association is by making a XY-scatter plot
of the samples. Typical examples of scatter plots are shown in Figure 2.11.
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Figure 2.11:
Examples of scatter plots

In some cases the scatter plot may indicate a non-linear type of relationship between the two
variables. In such cases some transformation, e.g. a logarithmic, square root, negative reciprocal, or
other appropriate transformation to one or both variables may be applied before analysis.

Spurious correlation

The lower left plot in Figure 2.11 gives an example of spurious correlation, which is easily obtained in
hydrology, when blindly data are being compared. For example if there is a distinct wet and dry period
and the discharges of two sites in different regions, but both subjected to monsoonal variation, are
plotted in an XY-plot, a situation like the one displayed will occur. In the wet period the data at X and
Y may be completely uncorrelated, but simply by the fact of the existence of a dry and wet period,
which clusters observations in the low and the high regions, the correlation is seemingly very high.
This effect is due to the acceptance of heterogeneous data, see also Figure 1.2 and 1.3. By taking
the low and high flow values in the same data set, the overall mean value for X and Y will be
somewhere between the low and the high values. Hence entries in the wet period on either side will
be positive relative to the mean and so will be their products. In the same way, entries in the dry
period will both be negative relative to the mean, so their product will be positive as well, ending up
into a large positive correlation.

Similarly, wrong conclusions can be drawn by comparing data having the same denominator. If X, Y
and Z are uncorrelated and X/Z and Y/Z are subjected to correlation analysis, a non-zero correlation
will be found (see e.g. Yevjevich, (1972)):

        (2.13)

From (2.13) it is observed, that when all coefficients of variation are equal, it follows that r = 0.5!!!

It indicates that one has to select the sample sets to be subjected to correlation and regression
analysis carefully. Common divisors should be avoided. Also, the direction of analysis as indicated in
Figure 2.2 is of utmost importance to ensure homogeneous data sets.
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3 Fundamental Concepts of Probability

3.1 Axioms and Theorems

Sample and Space Events

The sample space denoted by Ω, is defined here as the collection of all possible outcomes of
sampling on a hydrological variable.

An event is a collection of sample points in the sample space Ω of an experiment. An event can
consists of a single sample point called a simple or elementary event, or it can be made up of two or
more sample points known as a compound event. An event is (denoted by a capital letter A (or any
other letter)) is thus a subset of sample space Ω.

The Null Event, Intersection and Union

Two events A1 and A2 are mutually exclusive or disjoint if the occurrence of A1 excludes A2, i.e.
none of the points contained in A1 is contained in A2. and vice versa.

The intersection of the events A1 and A2 is that part of the sample space they have in common. This
is denoted by A1∩A2  or A1A2.

If A1 and A2 are mutually exclusive then their intersection constitutes a null event: A1∩A2 = A1A2 = ∅.

The union of two events A1 and A2 represents their joint occurrences, and it comprises the event
containing the entire sample in A1 and A2. This is denoted by A1∪A2, or simply A1+ A2. With the latter
notation one has to be careful as the sum of the two has to be corrected for the space in common (i.e.
the intersection.

The intersection is equivalent to the “and” logical statement, whereas the union equivalent to
“and/or”.

The above definitions have been visualised in Figure 3.1 by means of Venn diagrams.

Figure 3.1:
Definition sketch by Venn diagrams
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The definitions are illustrated in the following example:

Example 3.1 Events in a sample space.

Sample space and events representing rainy days (i) and total rainfall (p) at a rainfall station during
the period 1-10 July are given in Figure 3.2:

The sample space reads: Ω ≡ {(i,p): i = 0, 1, 2,…,10; and 0 ≤ p}

Event A1 ≡ {(i,p): i > 3, and p > 50}

Event A2 ≡ {(i,p): 3 ≤ i < 5, and  p > 20}

Event A3 ≡ {(i,p): 1 ≤ i < 3, and 2 ≤ p < 30}

Figure 3.2:
Presentation of sample space Ω
events A1, A2 and A3

The union and intersection of A1 and A2 and of A2 and A3 are presented in Figure 3.3.

Event A1 + A2 ≡ {(i,p): 3 ≤ i < 5, and  p > 20; i ≥ 5, and p > 50}

Event A1A2 ≡ {(i,p): i = 4 and p > 50}

Event A2 + A3 ≡ {(i,p): 1 ≤ i < 3, and 2 ≤ p < 30; 3 ≤ i < 5, and  p > 20}

Event A2A3 = ∅, since A2 and A3 are disjoint, having no points in common.
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Figure 3.3:
Unions and intersections of AI and
A2 and of A2 and A3

Probability axioms and theorems

Using these definitions the following axioms and theorems are discussed dealing with the probability
of an event or several events in the sample space.

Definition of probability

If a random events occurs a large number of times N, of which NA times the event A happens, then
the probability of the occurrence of event A is:

          (3.1)

Hence, if A is any event in a sample space Ω, then:

0 ≤ P(A) ≤ 1             (3.2)

The event in the sample space not contained in A is the complement of A, denoted by AC:

P(AC) = 1 – P(A)            (3.3)

If A is a certain event then:

P(A) = 1             (3.4)

Probability of the union of events

For any set of arbitrary events A1 and A2 the probability of the union of the events, i.e. the probability
of event A1 and/or A2 is:

P(A1∪A2) = P(A1) + P(A2) – P(A1∩A2)              (3.5)
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The last term is the intersection of A1 and A2, i.e. the part in the sample space they have in common.
So, if A1 and A2 have no outcomes in common, i.e if they are mutually exclusive, then the
intersection of the two events is a null event and then (3.5) reduces to:

P(A1∪A2) = P(A1) + P(A2)           (3.6)

For three joint events it generally follows:

P(A1 + A2 + A3)  =  P(A1) + P(A2) + P(A3) – P(A1 A2) – P(A1 A3) – P(A2 A3) + P(A1 A2 A3)               (3.7)

For any set of arbitrary events A1, A2, … , Am  the probability of the union becomes a complicated
expression, (see e.g. Suhir, 1997), but if the events A1, A2, … , Am have no outcomes or elements in
common, i.e. if they are mutually exclusive, then the union of the events have the probability:

                    (3.8)

Hence, the probability of the intersection is seen to have vanished as it constitutes a null event for
mutually exclusive events.

Conditional probability

The conditional probability P(B|A) gives the probability of event B given that A has occurred. Here A
serves as a new (reduced) sample space (see Figure 3.1) and P(B|A) is that fraction of P(A) which
corresponds to A∩B, hence:

          (3.9)

Denoting P(A∩B) ≡ P(AB) it follows:

P(AB) = P(B|A) . P(A)         (3.10)

Independence

If A and B are independent events, i.e. the occurrence of B is not affected by the occurrence of A,
then:

P(B|A) = P(B)        (3.11)

and hence:

P(AB) = P(B) . P(A)        (3.12)

It states that if the events A and B are independent, the probability of the occurrence of event A and B
equals the product of the marginal probabilities of the individual events.
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Total probability

Consider an event B in Ω with P(B) ≠ 0 and the mutually exclusive events A1, A2, …, Am, which are
collectively exhaustive, i.e. A1 +  A2 + …+ Am = Ω. Then the events BA1, BA2, …, BAm are also
mutually exclusive and BA1 +  BA2 + …+ BAm = B(A1 +  A2 + …+ Am) = BΩ = B. Hence:

        (3.13)

This is called the theorem of total probability, which is visualised in Figure 3.4.

Figure 3.4:
Concept of total probability

Bayes theorem

Observe now the following conditional probability:

The numerator reads according to (3.10) P(BAi) = P(B|Ai) . P(Ai). The denominator is given by (3.13).
It then follows for P(Ai|B), Bayes rule:

        (3.14)

Bayes rule provides a method to update the probabilities about the true state of a system (A), by
sampling (B) in stages. The probabilities P(Ai)’s on the right hand side of (3.14) are the probabilities
about the state of the system before the sample is taken (prior probabilities). After each sampling the
prior probabilities P(Ai)’s are updated, by replacing them with the posterior probability (= left hand
side of the equation), found through the outcome of the sampling: B. The conditional probabilities
P(B|Aj) represent basically the quality of the sampling method or equipment: the probability of getting
a particular sample B given that the true state of the system is Ai. Bayes rule can therefore be
interpreted as follows:

        (3.15)
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To illustrate the above axioms and theorems the following examples are given.

Example 3.2 Annual monthly maximum rainfall

The annual monthly maximum rainfall for station Chaskman is presented in Table 3.2 and Figure 3.5.

Year Pmax (mm) Year Pmax (mm) Year Pmax (mm)

1968 162.1 1978 154.4 1988 282.3

1969 320.2 1979 252.8 1989 227.6

1970 162.6 1980 325.8 1990 212.0

1971 212.6 1981 258.0 1991 404.6

1972 229.7 1982 144.0 1992 235.2

1973 312.6 1983 418.4 1993 304.0

1974 206.2 1984 225.5 1994 285.8

1975 191.8 1985 105.7 1995 262.0

1976 494.8 1986 229.0 1996 221.2

1977 207.0 1987 148.0 1997 342.6

Figure 3.5:
Annual monthly maximum rainfall
for Chaksman, period 1968-1997

From the table and figure it is observed that a monthly maximum > 260 mm has occurred 11 times in
a period of 30 years, hence Pmax > 260 mm = 11/30 = 0.367 in any one year. Assuming that the
elements of the annual monthly maximum series are independent, it follows that the probability of
having two annual maximum values in sequence > 260 mm = 0.367 x 0.367 = 0.135. From the series
one observes that this event happened only 2 times in 30 years, that is 2 out of 29, i.e. having a
probability of 2/29 = 0.069. If event A is the occurrence that Pmax > 260 mm and B is the event that
Pmax > 260 mm in a second successive year then: P(B|A) = P(A∩B)/P(A)=(2/29)/(11/30) = 0.19.

Example 3.3 Daily rainfall Balasinor (Gujarat)

Based on daily rainfall data of station Balasinor for the month of July in the period 1961 to 1970, the
following probabilities have been determined:

Probability of a rainy day following a rainy day  = 0.34

Probability of a rainy day following a dry day     = 0.17

Probability of a dry day following a rainy day     = 0.16

Probability of a dry day following a dry day        = 0.33
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Annual monthly maximum rainfall
for Chaksman, period 1968-1997
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Given that a particular day is dry, what is the probability the next two days are (1) dry and (2) wet?

(1) Call event A = dry day 1 after a dry day and event B = dry day 2 after a dry day. Hence
required is P(A∩B) = P(B|A) . P(A). The probability of having a dry day after a dry day is P(A)
= 0.33 and the probability of a dry day given that the previous day was dry P(B|A) = 0.33. So,
P(A∩B) = P(B|A) . P(A) = 0.33 . 0.33 = 0.11.

(2) Call event A = wet day 1 after a dry day and event B = wet day 2 after a dry day. Now we
require again P(A∩B) = P(B|A) . P(A). The probability of a wet day after a dry day is P(A) =
0.17 and the probability of a wet day given that the previous day was also wet = P(B|A) =
0.34. Hence, P(A∩B)  = P(B|A). P(A) = 0.34 . 0.17 = 0.06. This probability is seen to be about
half the probability of having two dry days in a row after a dry day. This is due to the fact that
for Balasinor the probability of having a wet day followed by a dry day or vice versa is about
half the probability of having two wet or two dry days sequentially.

Example 3.4 Prior and posterior probabilities, using Bayes rule

In a basin for a considerable period of time rainfall was measured using a dense network. Based on
these values for the month July the following classification is used for the basin rainfall.

Class Rainfall (mm) Probability

Dry

Moderate

Wet

Extremely wet

P < 50

50 ≤ P < 200

200 ≤ P < 400

P ≥ 400

P[A1] = 0.15

P[A2] = 0.50

P[A3] = 0.30

P[A4] = 0.05

Table 3.2: Rainfall classes and probability.

The probabilities presented in Table 3.2 refer to prior probabilities. Furthermore, from the historical
record it has been deduced that the percentage of gauges, which gave a rainfall amount in a certain
class given that the basin rainfall felt in a certain class is given in Table 3.3.

Percentage of gaugesBasin rainfall

P < 50 50 ≤ P < 200 200 ≤ P < 400 P ≥ 400

P < 50

50 ≤ P < 200

200 ≤ P < 400

P ≥ 400

80

25

5

0

15

65

20

10

5

8

60

25

0

2

15

65

Table 3.3: Conditional probabilities for gauge value given the basin rainfall

Note that the conditional probabilities in the rows add up to 100%.

For a particular year a gauge gives a rainfall amount for July of 230 mm. Given that sample value of
230 mm, what is the class of the basin rainfall in July for that year.

Note that the point rainfall falls in class III. The posterior probability of the actual basin rainfall in July
of that year becomes:

The denominator becomes:

∑
=

=

4

1i
ii

ii
i
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]].P[AA|1P[sample
1]sample|P[A
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The denominator expresses the probability of getting sample 1 when the prior probabilities are as
given in Table 3.2, which is of course very low.

Hence,

Note that the sum of posterior probabilities adds up to 1.

Now, for the same month in the same year from another gauge a rainfall of 280 mm is obtained.
Based on this second sample the posterior probability of the actual July basin rainfall in that particular
year can be obtained by using the above posterior probabilities as revised prior probabilities for the
July rainfall:

Note that the denominator has increased from 0.240 to 0.478.

Again note that the posterior probabilities add up to 1. From the above it is seen how the probability
on the state of July rainfall changes with the two sample values:

Class Prior probability After sample 1 After sample 2

I

II

III

IV

0.15

0.50

0.30

0.05

0.025

0.340

0.610

0.025

0.003

0.155

0.834

0.008

Table 3.4: Updating of state probabilities by sampling

Given the two samples, the probability that the rainfall in July for that year is of class III has increased
from 0.30 to 0.834.

Question: What will be the change in the last column of Table 3.4 if the third sample
gives a value of 180 mm?

0.025
0.295

0.15x0.05
sample1]|P[A

0.610
0.295

0.60x0.30
sample1]|P[A

0.340
0.295

0.20x0.50
sample1]|P[A

0.025
0.295

0.05x0.15
sample1]|P[A

4

3

2
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==

==

==
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0.008
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0.834
0.439
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0.439
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3.2 Frequency distributions

3.2.1 Univariate distributions

Discrete random variables

Formally, given a data set x1, x2, …., xN of a stochatic variable X, the probability mass function
(pmf) pX(x) expresses:

pX(x) = P(X = x)           (3.16)

and the cumulative distribution function (cdf) FX(x) gives the probability of occurrence X ≤ x:

          (3.17)

Continuous random variables

In terms of continuous random variables, the continuous equivalent of the pmf is the probability
density function (pdf), fX(x). The probability that X takes on values in the interval (x, x + dx) then
reads fX(x).dx:

fX(x).dx = P(x ≤ X < x + dx)        (3.18)

The cumulative probability density function (cdf) FX(x) is now defined as:

       (3.19)

The functions are displayed in Figure 3.6.

Figure 3.6: Probability density cumulative probability density function

FX(x) has the following properties:

• FX(-∞) = 0

• If x1 < x2 then FX(x1) < FX(x2) (FX(x) is monotonous increasing)
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• lim FX(x + h) = FX(x) for h ↓ 0 (FX(x) is right continuous)

For the pdf it follows:

        (3.20)

Example 3.5 Exponential pdf and cdf

The exponential pdf reads:

fX(x) = λexp(-λx)     for  x ≥ 0

Hence, the exponential cdf becomes with (3.19):

The exponential pdf and cdf for λ = 0.2 is shown in Figure 3.7. For example (P(X≤7) = Fx(7) = 1 –
exp(-0.2 x 7) = 0.75 as shown in Figure 3.7.

Figure 3.7:
Exponential pdf and cdf for λ=0.2

3.2.2 Features of distributions

In Chapter 2 some features of relative distribution functions were discussed. Here in a similar fashion
this will be done for the pdf and the cdf. The following features of distributions are discussed:

• parameters

• return period

• mathematical expectation

• moments

Parameters

The distribution functions commonly used in hydrology are not specified uniquely by the functional
form; the parameters together with the functional form describe the distribution. The parameters
determine the location, scale and shape of the distribution.
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Return period

The cdf gives the non-exceedance probability P(X ≤ x). Hence, the exceedance probability follows
from: P(X > x) = 1 – FX(x) is. Its reciproke is called the return period. So if T is the return period and xT

is its corresponding quantile, then:

        (3.21)

Note that in the above the notation for the quantile xT or x(T) is used. Others use the notation xp for
quantile where p = Fx(xp), i.e. non-exceedance probability.

Mathematical expectation

If X is any continuous random variable with pdf fX(x), and if g(X) is any real-valued function, defined
for all real x for which fX(x) is not zero, then the mathematical expectation of the function g(X) reads:

        (3.22)

Moments

If one chooses g(X) = Xk, where k = 1, 2, …. Then the kth moment of X about the origin is defined by:

        (3.23)

Note that an (‘) is used to indicate moments about the origin. Of special interest is the first moment
about the origin, i.e. the mean:

        (3.24)

If instead of the origin, the moment is taken around the mean, then the central moment follows (µk).
Note that the accent (‘) is omitted here to denote a central moment. The second central moment is the
variance:

        (3.25)

With the above one defines:

• the standard deviation σX, which expresses the spread around the mean in the same dimension
as the original variate:

        (3.26)

• the coefficient of variation Cv:

        (3.27)

• the skewness coefficient γ1,x of the distribution is defined by:

        (3.28)

[ ] ∫=
+∞

∞−
(x)dxg(x)fg(X)E X

[ ] ∫==µ
+∞

∞−
(x)dxfxXE X

kk'
k

[ ] ( )∫==µ=µ′
+∞

∞−
dxxxfXE xx1

[ ][ ] [ ] ∫ µ−=µ−=−==µ
+∞

∞−
(x)dxf)(x)(XE)XE(XEVar(X) X

2
X

2
X

2
2

2X Var(X) µ==σ

X

X
'
1

2
vC

µ
σ

=
µ

µ
=

∫ µ−
σ

=
σ

µ
=γ

+∞

∞−
(x)dxf)(x

1
X

3
X3

X
3
X

3
X1,

)(xF1

1

)xP(X1

1

)xP(X

1
T

TXTT −
=

≤−
=

>
=



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 256

• the peakedness of the distribution, expressed by the kurtosis γ2,X:

          (3.29)

The parameter µX is a location parameter, σX a scale parameter, while γ1,X and γ2,X are shape
parameters. The central moments µk are related to the moments about the origin µk’ as follows:

        (3.30)

Example 3.7 Moments of the exponential distribution

Since the exponential pdf reads:

fX(x) = λexp(-λx)     for  x ≥ 0

its first moment about the origin is:

It shows that the parameter λ is the reciproke of the mean value. The exponential distribution is well
suited to model inter-arrival times, for example of flood occurrences. Then x has the dimension of
time, and λ 1/time. If a flood of say 1,000 m3/s is on average exceeded once every 5 years, and the
exponential distribution applies, then µX = 5 years and hence λ = 1/5 = 0.2.

In extension to the above derivation, one can easily show, that the kth order moments about the origin
of the exponential distribution read:

Then from (3.30) it follows for the central moments:

And for the standard deviation, skewness and kutosis with (3.26), (3.28) and (3.29):
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It is observed from the above that for the exponential distribution the mean and the standard deviation
are the same. The distribution has a fixed positive skewness and a kurtosis of 9, which implies that
the probability density of an exponential distribution is more closely concentrated around the mean
than for a normal distribution.

3.2.3 Multivariate distribution functions

Occasionally, statistics about the joint occurrence of stochastic variables is of concern. In this
subsection we discuss:

• Joint cdf and pdf

• Marginal cdf and pdf

• Conditional distribution function

• Moments

• Covariance and correlation

Joint distributions

The probability of joint events (i.e. intersections in the sample space) is given by the joint k-
dimensional cdf FX1, X2, …, Xk(x1, x2, …, xk).

In case of two stochastic variables X and Y the joint 2-dimensional cdf FXY(x,y) reads:

        (3.31)

where fXY(x,y) is the joint 2-dimensional pdf:

        (3.32)

Marginal distributions

The marginal cdf FX(x) of X only, gives the non-exceedance probability of X irrespective of the value
of Y, hence

        (3.33)

and similarly the marginal pdf fX(x) reads:

        (3.34)
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Conditional distribution

Analogous to (3.5) the conditional distribution function can be defined:

        (3.35)

and the conditional pdf:

        (3.36)

Independent variables

Equivalently to (3.8), if X and Y are independent stochastic variables, the distribution function can be
written as:

        (3.37)

and similarly for the density function:

        (3.38)

Moments

In addition to the moments for univariate distributions the moments for bivariate distributions are
defined as follows:

        (3.39)

Covariance and correlation function

Of special interest is the central moment expressing the linear dependency between X and Y, i.e. the
covariance:

        (3.40)

Note that if X is independent of Y, then with (3.38) it follows:

        (3.41)

As discussed in Chapter 2, a standardised representation of the covariance is given by the correlation
coefficient ρXY:

        (3.42)

In Chapter 2 it was shown that ρXY varies between +1 (positive correlation) and –1 (negative
correlation). If X and Y are independent, then with (3.41) it follows ρXY = 0.
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Example 3.6: Bivariate exponential and normal distribution

Assume that storm duration and intensity, (X and Y), are both distributed according to an exponential
distribution (see Kottegoda and Rosso, 1997):

 FX(x) = 1 – exp(-ax), x ≥ 0; a > 0 FY(y) = 1 - exp(-by), y ≥ 0; b > 0         (3.43)

Their joint cdf given as a bivariate exponential distribution reads:

        (3.44)

Hence, with (3.32), the joint pdf becomes:

        (3.45)

The joint exponential probability density function with a = 0.05 h-1, b = 0.4 h/mm and c = 0.01 mm-1is
shown in Figure 3.8.

Figure 3.8:
Joint probability density function of
storm duration and rainfall
intensity

The conditional pdf of storm intensity given rain duration is:

        (3.46)
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The conditional cdf of a storm of given duration not exceeding a certain intensity reads:

        (3.47)

With a = 0.05 h-1, b = 0.4 h/mm and c = 0.01 mm-1, the conditional probability that a storm lasting 8
hours will exceed an average intensity of 4 mm/h becomes:

The marginal distributions follow from:

        (3.49)

If X and Y are independent, then c = 0 and it follows from (3.45):

             (3.50)

Other examples of joint probability density functions are given in Figures 3.9 and 3.10, with the effect
of correlation. In Figure 3.9 the joint standard normal pdf is given when the variables are independent,
whereas in Figure 3.10 the variables are positively correlated (ρ = 0.8)

Figure 3.9: Bivariate standard normal distribution (ρ = 0)
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Figure 3.10: Bivariate standard normal distribution (ρ = 08)

The effect of correlation on the probability density function is clearly observed from the density
contours in the right hand side representations of the joint pdf’s.

3.2.4 Moment generating function

In some cases the moments as discussed before, cannot be computed in a simple manner. Then,
often, use can be made of an auxiliary function, called the moment generating function G(s), which
is the expectation of exp(sX): G(s) = E[exp(sX)]. In case of a continuous distribution:

        (3.50)

Assuming that differentiation under the integral sign is permitted one obtains:

        (3.51)

For s = 0 it follows: exp(sx) = 1, and the right hand side of (3.51) is seen to equal the kth moment
about the origin:

        (3.52)

Of course this method can only be applied to distributions for which the integral exists. Similar to the
one-dimensional case, the moment generating function for bivariate distributions is defined by:

        (3.53)

of which by partial differentiation to s and t the moments are found.

Example 3.7: Moment generating function for exponential distribution

The moment generating function for an exponential distribution and the k-th moments are according
to (3.50) and (3.52):
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        (3.54)

3.2.5 Derived distributions

Consider the variables X and Y and their one to one relationship Y = h(X). Let the pdf of X be fX(x),
then what is the pdf of Y? For this, consider Figure 3.11. It is observed that the probability that X falls
in the interval x, x + dx equals the probability that Y falls in the interval y, y + dy. Hence,

fY(y)dy = fX(x)dx         (3.55)

Since fY(y) cannot be negative, it follows:

         (3.56)

where the first derivative is called the Jacobian of the transformation, denoted by J.

In a similar manner bivariate distributions can be transformed.

Figure 3.11:
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Example 3.8: Transformation of normal to lognormal pdf

A variable Y is said to have a logarithmic normal or shortly log-normal distribution if its logarithm is
normally distributed, hence ln(Y) = X. So:

3.2.6 Transformation of stochastic variables

Consider the function Z = a + bX + cY, where X, Y and Z are stochastic variables and a, b and c are
coefficients. Then for the mean and the variance of Z it follows:

E[Z] = E[a + bX + cY] = a + bE[X] + cE[Y]         (3.57)

E[(Z – E[Z])2] = E[(a + bX + cY – a – bE[X] – cE[Y])2] =

                      = E[b2(X - E[X])2 + c2(Y - E[Y])2 + 2bc(X - E[X])(Y - E[Y])] =

                      = b2E[(X - E[X])2] + c2E[(Y - E[Y])2] + 2bcE[(X - E[X])(Y - E[Y])]

or:

Var(Z) = b2Var(X) + c2Var(Y) + 2bcCov(X,Y)         (3.58)

Equations (3.57) and (3.58) are easily extendible for any linear function Z of n-random variables:

        (3.59)

         (3.60)

Or in matrix notation by considering the vectors:
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     (3.61)

        (3.62)

The matrix [V] contains the following elements:

                (3.63)

This matrix is seen to be symmetric, since Cov(Xi,Xj) = Cov(Xj,Xi). This implies [V] = [V]T. Furthermore,
since the variance of a random variable is always positive, so is Var([a]T[X]).

Taylor’s series expansion

For non-linear relationships it is generally difficult to derive the moments of the dependent variable. In
such cases with the aid of Taylor’s series expansion approximate expressions for the mean and the
variance can be obtained. If Z = g(X,Y), then (see e.g. Kottegoda and Rosso (1997)):

        (3.64)

Above expressions are easily extendable to more variables. Often the variables in g(..) can be
considered to be independent, i.e. Cov(..) = 0. Then (3.64) reduces to:

        (3.65)
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Example 3.9

Given a function Z = X/Y, where X and Y are independent. Required are the mean and the variance of
Z.

Use is made of equation (3.65). The coefficients read:

        (3.66)

Hence:

        (3.67)

Example 3.10:  Joint cumulative distribution function

The joint pdf of X and Y reads:

Q: determine the probability that 2<X<5 and 1<Y<7

A: the requested probability is obtained from:

Example 3.11:  Marginal distributions and independence (from: Reddy, 1997)

Given is the joint pdf of the variables X and Y:

Q: a. find the marginal distributions of X and Y and

b. are X and Y independent?

A:  a. the marginal distributions are obtained from:
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b. if X and Y are independent, then their conditional distributions should be equal to
    their marginal distributions. Hence is fX|Y(x,y) = fX(x) or is  fY|X(x,y) = fY(y)?

So: fX|Y(x,y) ≠ fX(x), i.e. X and Y are not independent. A similar answer would of course have
been obtained while examining fY|X(x,y) relative to fY(y).

Example 3.12: Joint pdf and independence (adapted from: Reddy, 1997)

Given are two variables X and Y who’s marginal distributions read:

Q: a.   find the joint pdf of X and Y if X and Y are independent

b. find the probability that X is always larger than Y

A: a. If X and Y are independent then their joint pdf is the product of their marginal
    distributions:

b. the probability that X is always larger than Y can be obtained from the answer
    under a:
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4 Theoretical Distribution Functions

4.1 General

A number of theoretical (analytical) frequency distributions has been developed to model or represent
the relative frequency distributions found in practice. In this chapter a summary is given of the
distribution functions commonly used in hydrology and included in HYMOS.

A distinction is made between:

• Discrete distributions, and

• Continuous distributions.

A discrete distribution is used to model a random variable that has integer-valued outcomes, like the
number of times an event occurs (successes) out of a number of trials. In contrast to this are the
continuous distributions where the random variable is real-valued.

The discrete distributions (Section 4.2), which will be discussed, include:

• Binomial distribution

• Poisson distribution

The continuous distribution models comprise:

• Uniform distribution (Section 4.3),

• Distributions related to the normal distribution(Section 4.4), including:

− Normal distribution

− Log-normal distribution

− Box-Cox transformations to normality

• Distributions related to Gamma or Pearson distribution, (Section 4.5),  including:

− Exponential distribution

− Gamma distribution

− Pearson Type 3 distribution or 3 parameter gamma distribution

− Log-Pearson Type 3 distribution

− Weibull distribution

− Rayleigh distribution

• Distributions for extreme values(Section 4.6), including:

− Generalised Extreme Value distributions, including the EV-1, EV-2 and EV-3 distributions
for largest and smallest value

− Generalised Pareto distributions, including Pareto Type 1, 2 and 3 distributions

• Sampling distributions(Section 4.7),:

− Chi-square distribution

− Student’s t-distribution

− Fisher F-distribution
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It is stressed here that none of the theoretical distributions do have a physical background. They do
not explain the physical phenomenon behind a population, but rather describe the behaviour of its
frequency distribution. In this sub-section a short description of the various distributions is given.

Binomial distribution

The binomial distribution applies to a series of Bernoulli trials. In a Bernoulli trial there are two
possible outcomes, that is an event occurs or does not occur. If the event occurs one speaks of a
success (probability p) and if it does not occur it is a failure (probability 1 - p). If the probability of a
success in each trial is constant, then the binomial distribution gives the distribution of the number
successes in a series of independent trials. For example, the trial outcome could be that the water
level in the river exceeds the crest of the embankment in a year and the other possible outcome that it
does not. Let’s call the event of an exceedance (how unfortunate for the designers) a “success”. If the
climatic conditions and the drainage characteristics in the basin do not vary one can assume that the
success probability is constant from year to year. Knowing this success probability, then the Bernoulli
distribution can be used to determine the probability of having exactly 0, 1, 2,…, or ≤1, ≤2,
≤…exceedances (“successes”) during the next say 75 years (or any other number of years = number
of trials). The distribution is therefore of extreme importance in risk analysis.

Poisson distribution

The Poisson distribution is a limiting case of the binomial distribution when the number of trials
becomes large and the probability of success small, but their product finite. The distribution describes
the number of occurrences of an event (a success) in a period of time (or space). Occurrences in a
period of time (space) form a Poisson process if they are random, independent, and occur at some
constant average rate. Essential is that the time (space) interval between the last occurrence and the
next one is independent of past occurrences; a Poisson process, therefore, is memory-less.

Uniform distribution

The uniform distribution describes a random variable having equal probability density in a given
interval. The distribution is particularly of importance for data generation, where the non-exceedance
probability is a random variable with constant probability density in the interval 0,1.

 Normal distribution

The normal distribution has a bell shaped probability density function, which is an appropriate model
for a random variable being the sum of a large number of smaller components. Apart from being used
as a sampling distribution or error model, the distribution applies particularly to the modelling of the
frequency of aggregated data like monthly and annual rainfall or runoff. Direct application to model
hydrological measurements is limited in view of its range from  - ∞ to + ∞.

Lognormal distribution

If Y = ln X has normal distribution, then X is said to have a 2-parameter lognormal distribution. In view
of its definition and with reference to the normal distribution, X can be seen as the product of a large
number of small components. Its range from 0 to + ∞ is more appropriate to model hydrological
series, whereas the logarithmic transformation reduces the positive skewness often found in
hydrological data sets. Its applicability in hydrology is further enhanced by introducing a shift
parameter x0 to X to allow a data range from x0 to + ∞. Then, if Y = ln(X – x0) has normal distribution it
follows that X has a 3-parameter lognormal distribution
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Box-Cox transformation

The Box-Cox transformation is a suitable, effective two-parameter transformation to data sets to
normality. Such transformations may be desired in view of the extensive tabulation of the normal
distribution.

Exponential distribution

The time interval between occurrences of events in a Poisson process or inter-arrival time is
described by the exponential distribution, where the distribution parameter represents the average
occurrence rate of the events.

Gamma distribution

The distribution of the time until the γth occurrence in a Poisson process has a gamma distribution. In
view of the definition of the exponential distribution the gamma distribution models the sum of γ
independent, identical exponentially distributed random variables. Note that γ  may be a non-integer
positive value. The gamma distribution is capable of modelling skewed hydrological data series as
well as the lognormal distribution is capable of. The gamma distribution has a zero lower bound and is
therefore not applicable to phenomena with a non-zero lower bound, unless a shift parameter is
introduced.

Pearson Type 3 or 3-parameter gamma distribution

The gamma distribution with a shift parameter to increase the flexibility on the lower bound is called
the Pearson Type 3 distribution. Sometimes it is also called 3-parameter gamma distribution, though
in literature the name gamma distribution is generally related to the 2-parameter case. The distribution
can take on variety of shapes like the 3-parameter lognormal distribution and is therefore often used
to model the distribution of hydrological variables. A large number of distributions are related to the
Pearson Type 3 distribution. For this, consider the standard incomplete gamma function ratio:

Note that the distribution reduces to an exponential function when γ = 1. In the above distribution x0 =
location parameter, β = scale parameter and γ and k are shape parameters. The following
distributions are included:

• k = 1, γ = 1: exponential distribution

• k = 1, x0 = 0: gamma distribution

• k = 1, x0 = 0, β = 2, γ = ν/2: chi-squared distribution

• k = 1: 3-parameter gamma or Pearson Type 3 distribution

• k = 1, Z = (ln(X - x0)-y0)/β)k: log-Pearson Type 3 distribution

• k = -1: Pearson Type 5 distribution

• k = 2, γ = 1: Rayleigh distribution

• k = 2, γ = 3/2: Maxwell distribution

• γ = 1: Weibull distribution
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Log-Pearson Type 3 distribution

If X = ln(Y – y0) has a Pearson Type 3 distribution, then Y follows a log-Pearson Type 3 distribution.
The distribution is often used to model annual maximum floods when the skewness is high.

Weibull distribution

The Weibull distribution is a special type of exponential or Pearson Type 3 distribution. The Weibull
distribution is often used to model distributions of annual minimum values and as such it equals the
Extreme Value Type III distribution for smallest values.

Rayleigh distribution

The Rayleigh distribution is a special case of the Weibull distribution. By comparison with the
definition of the chi-squared distribution it is observed that a random variable is Rayleigh distributed if
it is the root of the sum of two squared normal random variables. The distribution is often used to
model distributions of maximum wind speed but also for annual maximum flows, if the skewness is
limited.

Generalised Extreme Value distributions

Three types of Extreme Value distributions have been developed as asymptotic distributions for the
largest or the smallest values. It depends on the parent distribution which type applies. The
distributions are often called Fisher-Tippett Type I, II and III or shortly EV-1, EV-2 and EV-3
distributions for largest and smallest value. EV-1 for largest is known as the Gumbel distribution, EV-2
for largest as Fréchet distribution and EV-3 for smallest value as Weibull or Goodrich distribution.
Above models apply typically to annual maximum or minimum series. Despite the fact that these
distributions have particularly been derived for extreme values, it does not mean that one of the types
always applies. Often the lognormal, Pearson and log-Pearson Type 3, Weibull or Rayleigh
distributions may provide a good fit.

Generalised Pareto distributions

The Pareto distributions are particularly suited to model the distribution of partial duration series or
annual exceedance series. The Extreme Value distributions for the annual maximum value can be
shown to be related to the Pareto distributions with an appropriate model for the number of
exceedances. Consequently as for the Extreme Value distributions also for the generalised Pareto
distributions three types are distinguished: Pareto Type 1, 2 and 3 distributions.

Sampling distributions

An estimate is thought of as a single value from the imaginary distribution of all possible estimates,
called the sampling distribution. Sampling distributions are introduced to be able to give the likely
range of the true value of a parameter for which an estimate is made.

Chi-squared distribution

The sum of ν squared normally distributed random variables has a chi-squared distribution, where ν is
the number of degrees of freedom. The distribution is a special case of the gamma distribution. The
distribution is used to describe the sampling distribution of the variance; also, it finds application in
goodness of fit tests for frequency distributions.
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 Student’s t-distribution

The sampling distribution of many statistics is approximately standard normal if the statistic is scaled
by its standard deviation. If the latter is replaced by its sample estimate with ν degrees of freedom
then the sampling distribution of the statistic becomes a Student’s t-distribution with the same number
of degrees of freedom. When the number of degrees of freedom is sufficiently large, the Student
distribution can be replaced by the normal distribution. The t variable is the ratio of a normal and the
root of a chi-distributed variable divided by the number of degrees of freedom.

Fisher F-distribution

The ratio of two chi-squared variables divided by their degrees of freedom has a Fisher F-distribution.
The distribution is used in significance tests on difference between variances of two series.

4.2 Discrete distribution functions

4.2.1 Binomial distribution

Distribution and cumulative distribution function

A Bernoulli trial is defined as a trial with only two possible outcomes: a success or a failure, with
constant probability p and (1-p) respectively. The outcomes of a series of such trials are independent.
Let X be the random variable for the number of successes out of n trials. Its probability distribution
pX(x) is then given by the binomial distribution:

          (4.1)

The cdf reads:

          (4.2)

Moment related distribution parameters

The mean, variance and skewness are given by:

        (4.3a)

        (4.3b)

From the skewness it is observed that only for p = 0.5 a symmetrical distribution function is obtained.
For p < 0.5 the distribution is skewed to the right and for p > 0.5 skewed to the left. A few examples
are given in Figure 4.1
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Figure 4.1:
Binomial distributions for n = 20 and p = 0.1,
0.5 and 0.9

From (4.3b) and Figure 4.2 it is observed that for large n, the skewness γ1,X gradually tends to 0 and
the kurtosis γ2,X becomes close to 3. Then, the distribution approaches the normal distribution with
same mean and variance (see Subsection 4.3.2).

Figure 4.2:
Skewness and kurtosis of binomial
distribution as function of n and p

Example 4.1 Number of rainy days in a week

Let the probability of a rainy day in a particular week in the year be 0.3, then:

• what is the probability of  having exactly 4 rainy days in that week, and

• what is the probability of having at least 4 rainy days in that week?

Assuming that the occurrence of rainy days are independent, then the random variable X being the
number of rainy days in that week follows a binomial distribution with n = 7 and p = 0.3. From (4.1) it
then follows:

Note that this is different from the probability of having 4 successive rainy days, which probability is
0.3 x 0.3 x 0.3 x 0.3 = 0.008, which is of course much less.

The probability of having at least 4 rainy days in that week of the year should be larger than 0.097,
because also the probabilities of having 5, 6 or 7 days of rain should be included. The solution is
obtained from (4.2):
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From the above it is observed that in case n and X are big numbers the elaboration of the sum will
require some effort. In such cases the normal approximation is a better less cumbersome approach.

Related distributions

If the number of trials n = 1 then the binomial distribution is called Bernoulli distribution with mean p
and variance p(1-p). The geometric distribution describes the probability that the first success takes
place on the Nth trial. This distribution can be derived from (4.1) by noting that the Nth trial is preceded
by (N – 1) trials without success, followed by a successful one. The probability of having first (N-1)
failures is (1-p)N-1 (from (3.12) or (4.1) with n = N-1 and x = 0) and the successful one has probability
p, hence the probability of the first success in the Nth trial is p(1-p)N-1 for N = 1,2,3,… In a similar
manner the distribution function for the negative binomial distribution can be derived. This
distribution describes the probability that the kth exceedance takes place in the Nth trial. Hence, the Nth

trial was preceded by (k-1) successes in (N-1) trials, which is given by (4.1) (with: n = N-1 and x = k-
1), followed by a success with probability p.

4.2.2 Risk and return period

Consider a series of annual maximum discharges Qmax (t): t = 1,…, n. If a discharge Qd is exceeded
during these n years k-times then Qd has in any one year an average probability of being exceeded of
pE = k/n and the average interval between the exceedances is n/k = 1/pE. The latter is called the
return period T = 1/pE, as discussed in Sub-section 3.2.2, equation (3.21).

More generally, instead of Qmax, if we denote the random variable by Q, then the relation between
FQ(q), T and p is:

          (4.4)

If one states that an embankment has been designed for a discharge with a return period of T years it
means that on average only once during T years the river will overtop the embankment. But each
year there is a probability p = 1/T that the river overtops the embankment. Consequently, each year
the probability that the river does not overtop the embankment is (1 – pE) = FQ(q). Since the outcomes
in any one-year are independent, the probability of not being exceeded in N consecutive years is
given by:

          (4.5)

Note that this result is directly obtained from (4.1) with the number of successes x = 0. If q is the
design level (storm, flow, stage, etc.), then the probability that this level q will be exceeded one or
more times during the lifetime N of a structure (i.e. the probability of one or more failures), is simply
the complement of the probability of no failures in N years. The probability of failure is called the risk
r, hence:

          (4.6)

It is noted that the above definition of risk is basically incomplete. The consequence of failure should
also be taken into account. Risk is therefore often defined as the probability of failure times the
consequence of failure.
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Example 4.2 Risk of failure

A culvert has been designed to convey a discharge with a return period of 100 years. The lifetime of
the structure is 50 years. What is the probability of failure during the lifetime of the structure?

Example 4.3 Return period and risk

To be 90% sure that a design discharge is not exceeded in an 80-year period, what should be the
return period of the design discharge?

If we want to be 90% sure, then we take a risk of failure of 10%. From (4.6) it follows:

Hence for an event with an average return period of 760 years there is a 10% chance that in a period
of 80 years such an event will happen.

4.2.3 Poisson distribution

Distribution and cumulative distribution function

If in the binomial distribution n becomes large and p very small, then (4.1) can be approximated by the
Poisson distribution. Let the average number of successes in a series of n Bernoulli trials be ν = np,
then the distribution of the number of successes X in n trials, with probability of occurrence in each
trial of p, becomes, see also Figure 4.3:

          (4.7)

The cdf of the Poisson distribution reads:

          (4.8)

Moment related distribution parameters

The mean, variance, skewness and kurtosis are:

        (4.9a)

        (4.9b)

For ν→∞ the skewness becomes 0 and the kurtosis 3, and the Poisson distribution converges to a
normal pdf.
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Figure 4.3:
Poisson distribution for different values of
ν

Example 4.4: Drought

From a statistical analysis it was deduced that the monsoon rainfall at a location falls below 200 mm
on average once in 100 years. What is the probability that the monsoon rainfall will fall below 200 mm
less than twice in a 75-year period?

In this case n = 75 and the ‘success’ probability (falling below 200 mm) p = 1/100 = 0.01, hence n is
large and p is small, which fulfils the condition for the applicability of the Poisson distribution. With ν =
np = 75 x 0.01 = 0.75 it follows from (4.8):

With the binomial cdf (4.2) we would have obtained:

The result is seen to differ by < 0.1%, hence the Poisson distribution is a simple practical alternative
to the binomial distribution under the conditions of large n and small p.

Poisson and exponential distribution

The Poisson distribution forms the basis for the exponential distribution. For this ν is considered as
the average number of arrivals or happenings in a time period t. The arrival rate is denoted by λ= ν/t.
Consider the time between arrivals as a random variable Ta, and its probability distribution  is P(Ta ≤ t)
= 1 - P(Ta > t), where P(Ta > t) represents the probability of no occurrences or arrivals (i.e. no
successes) in a period t and is according to (4.7) given:

        (4.10)

Hence the cumulative probability distribution of the time between arrivals becomes with (4.10):

        (4.11)
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It shows that the waiting time between successive events of a Poisson process follows an
exponential distribution. Instead of time, the Poisson process can also be defined for space, length,
etc. Essential for a Poisson process is that the “period” can be divided in subintervals ∆t so small, that
the probability of an arrival in ∆t tends to λ∆t, while the probability of more than one arrival in ∆t is zero
and an occurrence in one subinterval is independent of the occurrence in any other, (Kottegoda and
Rosso, 1997). This makes the process memory-less.

Example 4.2 continued Risk of failure

The average waiting time for the design event was 100 years. The structure will fail in the 50 year
period, if the waiting time between the design events is less or equal to 50 years, which was defined
as risk. From (4.11) with λ = 1/T = 1/100 and t = N = 50 we obtain:

This result is seen to be close to the outcome of (4.6), which was r = 0.395.

4.3 Uniform distribution

Probability density and cumulative frequency distribution

The uniform or rectangular distribution describes the probability distribution of a random variable X,
which has equal non-zero density in an interval ‘ab’ and zero density outside. Since the area under
the pdf should equal 1, the pdf of X is given by:

        (4.12)

The cdf of the uniform distribution reads:

        (4.13)

The pdf and cdf of the uniform distribution are shown in Figure 4.4.

Figure 4.4:
Pdf and cdf of uniform distribution
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Moment related distribution parameters

The mean and the variance simply follow from the definition of the moments:

        (4.14)

The uniform distribution is of particular importance for data generation, where with a = 0 and b = 1 the
density function provides a means to generate the non-exceedance probabilities. It provides also a
means to assess the error in measurements due to limitations in the scale. If the scale interval is c, it
implies that an indicated value is ± ½ c and the standard deviation of the measurement error is σ =
√(c2/12) ≈ 0.3c.

4.4 Normal distribution related distributions

4.4.1 Normal Distribution

Four conditions are necessary for a random variable to have a normal or Gaussian distribution
(Yevjevich, 1972):

• A very large number of causative factors affect the outcome

• Each factor taken separately has a relatively small influence on the outcome

• The effect of each factor is independent of the effect of all other factors

• The effect of various factors on the outcome is additive.

Probability density and cumulative frequency distribution

The pdf and cdf of the normal distribution read:

        (4.15)

        (4.16)

where: x = normal random variable

           µX, σX = parameters of the distribution, respectively the mean and the
   standard deviation of X.

The pdf and cdf are displayed in Figure 4.5.
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Figure 4.5:
Normal probability density and cumulative
density functions for µ = 0 and σ = 1

The normal pdf is seen to be a bell-shaped symmetric distribution, fully defined by the two parameters
µX and σX. The coefficient (σX√(2π))-1 in Equation (4.15) is introduced to ensure that the area under
the pdf-curve equals unity, because the integral:

With a = 1/(2σX
2) the integral becomes σX√(2π), so dividing the integral by the same makes the area

under the pdf equal to 1.

The notation N(µX, σX
2) is a shorthand for the normal distribution. The normal pdf for different values

of µX and of σX are shown in Figures 4.6 and 4.7. Clearly, µX is a location parameter; it shifts the
distribution along the x-axis, but does not change the shape or scale of the distribution as is shown in
Figure 4.6. The parameter σX is a scale parameter; it stretches or reduces the scale of the horizontal
axis, see Figure 4.7, but it has no effect on the shape of the distribution.

Figure 4.6:
Normal probability density functions for
different values of µx’ (σx=1)

Figure 4.7:
Normal probability density functions for
different values of  σX, (µX = 0).
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Moment related parameters of the distribution

The characteristics of the distribution are as follows:

Mean = median = mode: µX       (4.17a)

Variance:      σX
2       (4.17b)

Standard deviation:      σX       (4.17c)

Coefficient of variation:      Cv,X = σX/µX       (4.17d)

Skewness:     γ1,X = 0       (4.17e)

Kurtosis:     γ2,X = 3        (4.17f)

Standard normal distribution

The location and scale parameters µX and σX are used to define the standard normal variate or
reduced variate Z:

       (4.18)

It is observed that Z = X for µX =0 and σX = 1, hence Z is an N(0,1) variate with pdf and cdf
respectively:

        (4.19)

        (4.20)

Equations (4.19) and (4.20) describe the standard normal probability density and cumulative density
function, see Figure 4.5. From (4.18) it follows:

Substitution of this expression in (4.20) with (4.18) results in equation (4.16) and by taking the
derivative with respect to X one obtains (4.15). The procedures used in HYMOS to solve (4.20) given
Z and to calculate the inverse (i.e. the value of Z given FZ(z)) are presented in Annex 4.1.

The standard normal distribution is generally tabulated in statistical textbooks. Such tables generally
only address the positive arguments. To apply these tables for negative arguments as well, note that
because of the symmetry of the pdf it follows:

fZ(-z) = fZ(z)         (4.21)

and

FZ(-z) = 1 – FZ(z)         (4.22)
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Quantiles

Values of xT and zT for which FX(xT) = FZ(zT) = 1 – 1/T are related by (4.18) and by its inverse:

        (4.23)

ZT is obtained as the inverse of the standard normal distribution.

Example 4.5 Tables of the normal distribution

For z = 2,        fZ(2) = 0.0540, hence fZ(-2) = 0.0540

For z = 1.96 FZ(1.96) = 0.9750,

Hence: FZ(-1.96) = 1 –  0.9750 = 0.0250

It implies that the area under the pdf between z = -1.96 and z = 1.96 (see Figure 4.8) amounts 0.9750
– 0.0250 = 0.95 or 95%.

Given that the mean of a random variable is 100 and its standard deviation is 50, the quantile for T =
100 is derived as follows:

For T = 100, FZ(z) = 1 – 1/100 = 0.99. From the table of the normal distribution this non-exceedance
probability corresponds with a reduced variate zT = 2.33. Hence, using (4.23):

xT = µX + σXzT = 100 + 50 x 2.33 = 216.5

Figure 4.8:
Use of symmetry of standard normal pdf
around 0 to find non-exceedance probabilities

Some Properties of the Normal Distribution

1. A linear transformation Y = a + bX of an N(µX, σX
2) random variable X makes Y an N(a + bµX,

b2σX
2) random variable.

2. If Sn is the sum of n independent and identically distributed random variables Xi each having a
mean µX and variance σX

2, then in the limit as n approaches infinity, the distribution of Sn

approaches a normal distribution with mean nµX and variance nσX
2.
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3. Combining 1 and 2, for the mean Xm of Xi it follows, using the statement under 1 with a = 0 and b
= 1/n, that Xm tends to have an N(µX, σX

2/n) distribution as n approaches infinity:

If Xi is from an N(µX, σX
2) population, then the result for the sum and the mean holds regardless of the

sample size n. The Central Limit Theorem, though, states that irrespective of the distribution of Xi

the sum Sn and the mean Xm will tend to normality asymptotically. According to Haan (1979) if interest
is in the main bulk of the distribution of Sn or Xm then n as small as 5 or 6 will suffice for approximate
normality, whereas larger n is required for the tails of the distribution of Sn or Xm. It can also be shown
that even if the Xi’s have different means and variances the distribution of Sn will tend to be normal for
large n with N(ΣµXi; ΣσXi

2), provided that each Xi has a negligible effect on the distribution of Sn, i.e.
there are no few dominating Xi’s.

An important outcome of the Central Limit Theorem is that if a hydrological variable is the outcome of
n independent effects and n is relatively large, the distribution of the variable is approximately normal.

Application in hydrology

The normal distribution function is generally appropriate to fit annual rainfall and annual runoff series,
whereas quite often also monthly rainfall series can be modelled by the normal distribution. The
distribution also plays an important role in modelling random errors in measurements.

4.4.2 Lognormal Distribution

Definition

In the previous section it was reasoned, that the addition of a large number of small random effects
will tend to make the distribution of the aggregate approximately normal. Similarly, a phenomenon,
which arises from the multiplicative effect of a large number of uncorrelated factors, the distribution
tends to be lognormal (or logarithmic normal); that is, the logarithm of the variable becomes normally
distributed (because if X = X1X2X3…. Then ln(X) = ln(X1) + ln(X2) + ln(X3) + …).

Let X be a random variable such that X – x0 > 0 and define

Y = ln(X – x0)         (4.23)

If Y has a normal distribution N(µY, σY
2), then X is said to have a 3-parameter log-normal distribution

LN(x0, µY, σY) or shortly LN-3. If x0 is zero (or given) then the distribution of X is called a 2-parameter
log-normal distribution LN(µY, σY) or LN-2.

Probability density and cumulative frequency distribution

The pdf of the normal random variable Y is given by:

        (4.24)
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The pdf of X is obtained from the general transformation relation (3.56):

Since Y = ln (X – x0) so: |dy/dx| = 1/(X – x0) for X > x0, it follows from (4.24) for the pdf of X:

        (4.25)

Equation (4.25) is the LN-3 pdf. The LN-2 pdf follows from (4.25) with x0 = 0:

        (4.26)

To appreciate the parameters of the distribution, note the relation between the moment related
parameters of the distribution and the parameters x0, µY and σY:

Moment related parameters

      (4.27a)

      (4.27b)

It is observed from the above equations that the first moment parameters are dependent on x0, µY and
σY. The variance depends on µY and σY, whereas the skewness and kurtosis are only dependent on
σY. This is also illustrated in the Figures 4.9 to 4.11. Clearly, x0 is a location parameter (see Figure
4.9); it shifts only the distribution function, whereas µY is a scale parameter, as the latter does not
affect the skewness (see Figure 4.10). The parameter σY is a shape parameter, since it affects the
shape of the pdf as is deduced from (4.27) and Figure 4.11).

Figure 4.9:
Effect of location parameter x0 on
lognormal distribution
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Figure 4.10:
Effect of scale parameter µy on
lognormal distribution

Figure 4.11:
Effect of is a shape parameter σy on lognormal
distribution

Equation (4.27a) shows that for a lognormal distribution the following inequality holds:

x0 < mode < median < mean

From (4.27b) it is observed that η > 0 hence γ1 > 0 and γ2 > 3; so the skewness is always positive and
since the kurtosis is greater than 3 the lognormal distribution has a relatively greater concentration of
probability near the mean than a normal distribution. The relation between γ1 and η is displayed in
Figure 4.12.To cope with negative skewness and distributions of smallest values, the sign of X or (X-
x0) has to be changed, see Sub-section 4.3.13.

Figure 4.12:
η as function of skewness γ1
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Distribution parameters expressed in moment related parameters

The distinction between LN-2 and LN-3 is important. From equation (4.27) it is observed that  when x0

= 0 the parameters µY and σY are fully determined by the first two moments µX and σX which then also
determine the skewness and kurtosis through their fixed relation with the coefficient of variation η.

For LN-2 the following inverse relations can be derived:

        (4.28)

        (4.29)

The mean and the coefficient of variation of X are seen to describe the LN-2 pdf.

For LN-3 the inverse relations are more complex as the starting point is the cubic equation in η
relating η and γ1,X, from (4.27b):

        (4.30)

The parameters of the LN-3 distribution can be expressed in η  (i.e. γ1,X), µX and σX :

        (4.31)

The parameters of the LN-3 distribution can be expressed in η (i.e. γ1,X), µX and σX:

        (4.32)

        (4.33)

        (4.34)

If the parameters would be determined according to equations (4.32) to (4.34) one observes that the
shape parameter σY is solely determined by the skewness, the scale parameter µY by the variance
and the skewness and the location parameter x0 by the first three moments.

Moment generating function

The expressions presented in (4.27a/b) can be derived by observing that:
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Hence, the power of the exponential can be replaced by:

The last integral is seen to be 1, hence it follows for E[(X-x0)
k] = E[exp(kY)]:

        (4.35)

Quantiles

The non-exceedance probability of the lognormally distributed variable X is derived through the
standard normal distribution by inserting the standard normal variate Z derived as follows:

        (4.36)

The computation of the standard normal distribution is presented in Annex A4.1 or is obtained from
tables in statistical textbooks.

The reverse, given a return period T or non-exceedance probability p, the quantile xT or xp is obtained
from the standard normal distribution presented in Annex A4.2 or from tables through the standard
normal deviate Z as follows:

         (4.37)

Example 4.6 Lognormal distribution

Given is a LN-3 distributed variate X with mean 20, standard deviation 6 and skewness 1.5. Derive:

• the quantile for T=10.

• Return period of x = 35
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To solve the first problem use is made of equation (4.37). The reduced variate zT is obtained as the
inverse of the standard normal distribution for a non-exceedance probability of FZ(zT) =1-1/10 = 0.9.
From the tables of the standard normal distribution one obtains:

zT = 1.282

Next application of (4.37) requires values for the parameters x0, σY and µY. These are determined
using equations (4.31) to (4.34). The parameter η as a function of the skewness follows from (4.31),
which gives with γ1,X = 1.5:

Then for x0, σY and µY it follows from (4.32) to (4.34) respectively:

Hence with (4.37) one obtains for the quantile xT:

To solve the second problem, use is made of equation (4.36). The normal variate y is derived from the
LN-3 variate x = 35 and x0:

Since z is a standard normal variate, the non-exceedance probability attached to Z is found from the
standard normal distribution:

Application in hydrology

The lognormal distribution function finds wide application in hydrology. It is generally appropriate to fit
monthly rainfall and runoff series, whereas quite often also annual maximum discharge series can be
modelled by the lognormal distribution.

466.0794.0260.1
2

1
22

1
2

3/1
2

X,1X,1

3/1
2

X,1X,1 =−=























 γ
++

γ
−−
























 γ
++

γ
=η

456.2
2

1
)xln(

444.0:so197.0)1ln(

130.7
466.0

6
20x

2
Y0XY

Y
22

Y

X
X0

=σ−−µ=µ

=σ=+η=σ

=−=
η
σ

−µ=

7.2760.2013.7)444.0x282.1456.2exp(13.7)zexp(xx YTY0T =+=++=σ+µ+=

963.1
444.0

456.2328.3y
z

328.3)130.735ln()xxln(y

Y

Y

0

=
−

=
σ
µ−

=

=−=−=

40
025.0

1

)963.1Z(P

1
T

025.0975.01)963.1Z(P

975.0)963.1Z(P)z(FZ

==
>

=

=−=>

=≤=



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003

4.4.3 Box-Cox transformation

Transformation equations

Box and Cox (1964) describe a general transformation of the following form:

        (4.38)

The transformed variable Y has, by approximation, a normal distribution N(µY, σY). The transformation
is seen to have two parameters, a location or shift parameter x0 and the power and scale parameter
λ.

The reduced variate Z, defined by:

         (4.39)

with Y defined by (4.38) has a standard normal distribution. Once x0 and λ are known, with the inverse
of (4.39) and (4.38) the quantiles can be derived from the standard normal distribution.

Quantiles

For a particular return period T it follows for quantile xT:

       (4.40)

It is noted that for very extreme values this transformation should not be used in view of the normality
by approximation. In HYMOS flexibility is added by considering |X-x0| instead of (X-x0).

Application of the transformation shows that it returns a transformed series Y with a skewness close
to zero and a kurtosis near 3.

Example 4.7 Box-Cox transformation

An example of its application is given below for annual maximum rainfall for Denee (Belgium), period
1882-1993.

Statistics before Box-Cox transformation

Number of data
Mean
Standard deviation
Skewness
Kurtosis

112
37.0
11.8
1.23
4.56

Statistics after Box-Cox transformation with x0 = 15.0 and
λ = 0.142

Number of data
Mean
Standard deviation
Skewness
Kurtosis

112
3.70
0.81
0.00
3.05
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From the result it is observed that the skewness and kurtosis of the transformed variable are indeed
close to 0 and 3. On the other hand λ is seen to be very small. It implies that the normal variates will
be raised to a very high power to arrive at the quantiles, which is rather unfortunate. In such a case a
lognormal distribution would be more appropriate.

4.5 Gamma or Pearson related distributions

4.5.1 Exponential distribution

Probability density and cumulative frequency distribution

In Sub-section 4.2.2 the exponential distribution was derived from the Poisson distribution. The
exponential distribution models the distribution of the waiting time between successive events of a
Poisson process. The exponential distribution is a special case of the gamma or Pearson Type 3
distribution (see next sub-sections). The general form of the exponential distribution is given by:

        (4.41)

and the cdf reads:

        (4.42)

The distribution is seen to have 2 parameters x0 and β and will therefore be denoted by E-2. With x0 =
0 it reduces to 1-parameter exponential distribution E-1.

Standardised distribution

Introducing the reduced variate Z:

        (4.43)

it is observed that Z = X if x0 = 0 and β = 1, hence the standardised exponential pdf becomes:

        (4.44)

and the standardised exponential cdf is given by:

        (4.45)

Replacing Z in (4.45) by (4.43) equation (4.42) is seen to be obtained, and differentiating the cdf with
respect to X gives pdf (4.41).

Moment related distribution parameters

The moment related parameters are given by:

        (4.46)
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It is observed that the distribution parameter x0 is a location parameter as it affects only the first
moment of the distribution. The parameter β is a scale parameter as it scales variate X. The
skewness of the distribution is fixed. The distribution is shown in Figure 4.13.

Figure 4.13:
Exponential distribution as function of the
reduced variate
(x-x0)

From (4.46) it follows for the mean, variance and skewness of the standardised gamma function (x0 =
0, β = 1) respectively 1, 1 and 2.

Distribution parameters expressed in moment related parameters

From (4.46) it follows for the distribution parameters as function of the moments:

        (4.47)

        (4.48)

If x0 = 0 the distribution reduces to 1-parameter exponential distribution E-1. Then the mean and the
standard deviation are seen to be identical. Note also that with x0 = 0 and λ  = 1/β substituted in (4.42)
equation (4.11) is obtained.

Quantiles

The values of X and Z for which FX(x) = FZ(z) are related by (4.43). Using the inverse the quantiles xT

are obtained from the reduced variate zT for a specified return period T:

        (4.49)

The quantile xT can also directly be obtained from the first two moments and T:

        (4.50)

Example 4.8: Exponential distribution

A variate X is exponentially distributed with mean 50 and standard deviation 20. Determine:

• the value of X, which corresponds with a non-exceedance probability of 0.95.

• the probability that 50 ≤ X ≤ 75.
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Note that since µX ≠ σX the exponential distribution is E-2.The non-exceedance probability implies an
exceedance probability of 1 – 0.95 = 0.05, hence the return period T is 1/0.05 = 20. From (4.50) the
variate value for this return period becomes:

XT = 50 + 20 x {ln(20) – 1}  =  50 + 20 x (3.0 – 1) = 90

To solve the second problem equation (4.42) is used, which requires the parameters x0 and β to be
available. From (4.47) one gets β = σX = 20 and from (4.48) x0 = µX - β = 30, hence:

Application in hydrology

The exponential distribution finds wide application. In engineering one applies the distribution to
model time to failure, inter-arrival time, etc. In hydrology the distribution is a.o. applied to model time
between flood peaks exceeding a threshold value. Furthermore, the distribution models a process,
where the outcomes are independent of past occurrences, i.e. the process is memory-less.

4.5.2 Gamma distribution

Definition

The distribution of the sum of k exponentially distributed random variables each with parameter β
(equation (4.41) with x0 = 0) results in a gamma distribution with parameter k and β. The gamma
distribution describes the waiting time till the kth exceedance and is readily derived from the Poisson
distribution (like the exponential) by multiplying the probability of having (k-1) arrivals till t, described
by equation (4.7), and the arrival rate (λ=1/β) at t, leading to the Erlang distribution. Since k does not
need to be an integer it is replaced by the positive real γ, and a gamma distribution with two
parameters γ and β is obtained, shortly denoted by G-2.

Probability density and distribution function

The gamma pdf has the following form:

        (4.51)

and the cdf reads:

        (4.52)

Standardised gamma distribution

Introducing the reduced gamma variate Z, defined by:

        (4.53)
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it is observed that Z = X for β = 1 and the pdf and cdf of the standardised gamma distribution then
read:

        (4.54)

        (4.55)

Note that by substituting (4.53) in (4.55) and with dx = β dz equation (4.52) is obtained, and by
differentiating the cdf with respect to X the pdf equation (4.51) follows.

Gamma function

Equation (4.55) is called the incomplete gamma function ratio. The complete (standard) gamma
function Γ(γ), needed to get area = 1 under the pdf curve, is defined by:

        (4.56)

The gamma function provides a continuous alternative for discrete factorials. The function has the
following properties:

        (4.57)

And hence:

        (4.58)

Furthermore:

        (4.59)

The gamma function is tabulated for values of γ: 1 ≤ γ ≤ 2. In HYMOS the complete gamma function is
computed in two steps:

• first γ is reduced to a value between 1 and 2 using the recursive equation (4.58):

Γ(γ -1) = Γ(γ)/γ  for  γ < 1  or:  Γ(γ + 1) = γΓ(γ) for   γ > 2, and then

• secondly, a third order interpolation procedure is used to obtain a value from the basic gamma
function table.

Example 4.9 Gamma function

Derive the gamma function values for γ = 3.2 and 0.6.

Procedure:
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γ = 3.2, then Γ(3.2) = 2.2Γ(2.2) = 1.2x2.2Γ(1.2) = 1.2x2.2x0.9182 = 2.424

γ = 0.6, then Γ(0.6) = Γ(1.6)/0.6 = 0.8935/0.6 = 1.489

Note that the values for Γ(1.2) and Γ(1.6) are obtained from the basic gamma function table.

The computational procedure for the incomplete gamma function as used in HYMOS is presented in
Annex A4.3 and A4.4 for its inverse.

Moment related parameters of the distribution

The mean, mode, variance, skewness and kurtosis of the gamma distribution read:

      (4.60a)

      (4.60b)

From (4.53) it is observed that β is a scale parameter and from (4.60b) γ is a shape parameter. This
is also seen from Figures 4.14 to 4.16. Comparison of (4.60a) with (4.46) with x0 = 0 shows that the
mean and the variance of the gamma distribution is indeed γ-times the mean and the variance of the
exponential distribution. This supports the statement that the gamma distribution is the distribution of
the sum of γ exponentially distributed random variables. Note that for large γ the skewness tends to
zero and kurtosis to 3 and hence the gamma distribution approaches the normal distribution. Note
that the mode mX > 0 for γ > 1 and the distribution is single peaked. If γ ≤ 1 the pdf has a reversed J-
shape.

From (4.60a) it is also observed that with β = 1 the mean and the variance of the standardised gamma
distribution are both equal to γ; the skewness and kurtosis are as in (4.60b).

Figure 4.14:
Gamma distribution effect of scale
parameter β
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Figure 4.15:
Gamma distribution effect of shape

parameter γ

Figure 4.16:
Gamma cdf’s

Distribution parameters expressed in moment related parameters

From (4.60a) it follows for the gamma parameters β and γ:

        (4.61)

        (4.62)

Hence, by the mean and the standard deviation the distribution parameters are fully determined. From
a comparison of (4.62) with (4.60b) it is observed that for the gamma distribution there is a fixed
relation between the coefficient of variation and the skewness. It follows:

        (4.63)

It implies that from a simple comparison of the coefficient of variation with the skewness a first
impression can be obtained about the suitability of the 2-parameter gamma distribution to model the
observed frequency distribution. As will be shown in the next sub-section more flexibility is obtained
by adding a location parameter to the distribution.

Quantiles of the gamma distribution

The quantiles xT of the gamma distribution are derived from the inverse of the standard incomplete
gamma function and the reduced variate zT:
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        (4.64)

The required parameters γ for the standard incomplete gamma function and β to transform the
standardised variate zT into xT can be obtained from equations (4.61) and (4.62) or some other
parameter estimation method.

4.5.3 Chi-squared and gamma distribution

Probability density and cumulative distribution function

By putting β = 2 and γ = ν/2 the gamma distribution becomes the Chi-squared distribution:

        (4.65)

        (4.66)

The parameter ν is the number of degrees of freedom. The chi-square distribution is the distribution of
the sum of ν squared normally distributed random variables N(0, 1) and find wide application in
variance testing and goodness of fit testing of observed to theoretical distributions.  It also follows,
that the sum of 2 squared standard normal variables has an exponential distribution.

4.5.4 Pearson type 3 distribution

Probability density and cumulative distribution function

By introducing a location parameter x0 in the gamma distribution, discussed in the previous sub-
section, a Pearson type 3 distribution is obtained, shortly denoted by P-3. This distribution is
sometimes also called a 3-parameter gamma distribution or G-3. Its pdf has the following form:

        (4.67)

and the cdf reads:

        (4.68)

The reduced Pearson Type 3 variate Z, is defined by:

        (4.69)

It is observed that Z = X for x0 = 0 and β = 1. Introducing this into (4.67) and (4.68) leads to the
standardised gamma distributions presented in equations (4.54) and (4.55).
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Moment related parameters of the distribution

The mean, mode, variance, skewness and kurtosis of the P-3 distribution read:

      (4.70a)

      (4.70b)

It is observed that x0 is a location parameter as it affects only the first moment of the distribution
about the origin. This is also seen from Figures 4.17. As for the (2-parameter) gamma distribution β is
a scale parameter and γ is a shape parameter. Also, for large γ the distribution becomes normal. The
mode of the distribution is at x0+β(γ-1), for γ > 1 and the distribution is unimodal. For  γ ≤ 1 the
distribution is J-shaped similar to the gamma distribution, with its maximum at x0.

Figure 4.17:
Pearson Type 3 distribution effect of location parameter x0

Distribution parameters expressed in moment related parameters

The parameters of the Pearson Type 3 distribution can be expressed in the mean, standard deviation
and skewness as follows:

        (4.71)

        (4.72)

        (4.73)

From the last expression it is observed that:

        (4.74)
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The term within brackets can be seen as an adjusted coefficient of variation, and then the similarity
with Equation (4.63) is observed.

Moment generating function

The moments of the distribution are easily obtained from the moment generating function:

        (4.75)

Or introducing the reduced variate Z = (x-x0)/β, and dx = β dz:

Introducing further: u = z(1-sβ), or z = u/(1-sβ) and dz = 1/(1-sβ)du, it follows:

        (4.76)

By taking the derivatives of G(s) with respect to s at s = 0 the moments about the origin can be
obtained:

Since for the computation of the central moments the location parameter is of no importance, the
moment generating function can be simplified with x0 = 0 to:

        (4.78)

Using equation (3.30) the central moments can be derived from the above moments about the origin.

Quantiles

The quantile xT of the gamma distribution follows from the inverse of the standard incomplete gamma
function zT and (4.67):

         (4.79)
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Example 4.10: Gamma distribution

The mean, standard deviation and skewness of a P-3 variate are respectively 50, 20 and 1.2.
Required is the variate value at a return period of 100.

First, the parameters of the P-3 distribution are determined from (4.71) – (4.73). It follows:

From the standard incomplete gamma function with γ = 2.78 it follows that zT = z100 = 8.03. Then from
(4.77) it follows for xT = x100:

Note that the standardised gamma variate can also be obtained from the tables of the chi-squared
distribution for distinct non-exceedance probabilities. Since γ = ν/2 it follows ν = 2γ = 2 x 2.78 = 5.56.
From the χ2 - tables one gets for T = 100 or p = 0.99 a χ2 – value by interpolation between ν = 5 and ν
= 6 of 16.052. For the chi-squared distribution β = 2, so: χT

2 = βzT or zT or zT = χT
2/β = 16.052/2 =

8.03. The values can of course also directly be obtained via the “Statistical Tables” option in HYMOS
under “Analysis”.

Related distributions

For specific choices of the parameters x0, β and γ, a number of distribution functions are included in
the Pearson Type 3 or 3-parameter gamma distribution, see Tables 4.2 and 4.3.

The moment related parameters of these distributions are summarised in Table 4.3. By considering
the logarithm of the variate or by raising the reduced variate Z of (4.69) to a power k further
distributions like Weibull and Rayleigh distributions can be defined as presented in Sub-section 4.1
Those are discussed in the next sub-sections.

x0 = 0: 1-par. exponential
γ = 1: exponential

x0 ≠ 0: 2-par. exponential

β = 1:  1-par gamma

β ≠ 1:  2-par gamma

Pearson Type 3 or
3-parameter gamma (x0,β,γ)

x0 = 0: gamma

β = 2, γ = ν/2: chi-squared

Table 4.2: Summary of related distributions
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distribution mean mode Variance Skewness kurtosis Standardised variate
z

1-par. exponential β - β2 2 9 z=x/β

2-par. exponential x0+β - β2 2 9 z=(x-x0)/β

1-par. gamma γ γ-1, γ>1 γ 2/√γ 3(γ+2)/γ z=x

2-par. gamma βγ β(γ-1) β2γ 2/√γ 3(γ+2)/γ z=x/β

3-par. Gamma or P-3 x0+βγ x0+β(γ-1) β2γ 2/√γ 3(γ+2)/γ z=(x-x0)/β

Chi-squared ν ν-2, ν>2 2ν 23/2/√ν 3(ν+4)/ν z=x/2

Table 4.3: Moment related parameters of the exponential and gamma family of
distributions

4.5.5 Log-Pearson Type 3 distribution

Probability density function

When Y = ln(X - x0) follows a Pearson Type 3 distribution then (X - x0) is log-Pearson Type 3
distributed. Its pdf is given by:

        (4.82)

The log-Pearson Type 3distribution finds application in hydrology particularly for strongly positively
skewed annual flood peaks. The skewness is reduced by a logarithmic transformation, to arrive at a
Pearson type III distribution. In the USA the log-Pearson type III is the standard for modelling annual
maximum floods (Water Resources Council, 1976). All relations presented in the previous sub-section
are valid for ln(X-x0).

Quantiles of LP-3

The quantiles xT of the LP-3 distribution are obtained from the inverse of the standard incomplete
gamma function leading to zT and (4.81):

        (4.81)

4.5.6 Weibull distribution

Probability density and cumulative distribution function

With γ = 1 equation (4.55) reduces to:
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it follows for the pdf and cdf of the Weibull distribution:

        (4.82)

        (4.83)

Note that for k = 1 the Weibull distribution reduces to an exponential distribution.

Moment related parameters of the distribution

The mean, mode, variance and skewness of the Weibull distribution read:

      (4.84a)

      (4.84b)

The distribution is seen to have 3 parameters: x0  is a location parameter, β a scale parameter and k
is a shape parameter. For k > 1 the pdf is seen to be unimodal, see also Figure 4.19.
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(b)

Figure 4.19 (a) and 4.19 (b): Weibull distribution for various values
of k(x0 = 0 and β = 1)

The expression for the skewness as a function of k is rather complicated and has therefore been
visualised in Figure 4.20. From the Figure it is observed that for k < 1 the skewness increases rapidly
to very high values. In practice the region 1< k < 3 is mostly of interest. Note that for k > 3.5 the
skewness becomes slightly negative.

Note also that above expressions for the mean, variance and skewness can easily be derived from
the moment generating function. For x0 = 0 the rth moment about the origin becomes:

        (4.85)

Subsequently, equation (3.30) is used to obtain the central moments. For the mean x0 has to be
added.

Figure 4.20: Skewness of W-3 as function of k
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Quantiles of W-3

From (4.83) the quantile of the Weibull distribution is easily determined. For a given return period T it
follows for xT:

        (4.86)

From (4.86) it is observed that for given x0,  β and T values xT decreases with increasing k.

The Weibull distribution is often used to model the frequency distribution of wind speed and flow
extremes (minimum and maximum). It is one of the asymptotic distributions of the general extreme
value theory, to be discussed in the next sub-section.

4.5.7 Rayleigh distribution

Probability density and cumulative distribution function

From the Weibull distribution with k = 2 the Rayleigh distribution is obtained. Its pdf and cdf read:

        (4.87)

        (4.88)

Moment related parameters of the distribution

From (4.84) the mean, mode, variance and skewness are given by:

        (4.89)

The distribution is seen to have location parameter x0 and a scale parameter β. The skewness of the
distribution is fixed. The pdf and cdf of the Rayleigh distribution are shown in Figure 4.21.
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Figure 4.21:
Rayleigh distribution

The distribution parameters are easily related to the mean and standard deviation of the Rayleigh
variate X:

        (4.90)

        (4.91)

Quantiles of R-2

The quantiles xT of the Rayleigh distribution for a return period T follow from (4.88):

        (4.92)

The Rayleigh distribution is suitable to model frequency distributions of wind speed and of annual
flood peaks in particular.

4.6 Extreme value distributions

4.6.1 Introduction

A number of distribution functions are available specially suited to model frequency distributions of
extreme values, i.e. either largest values or smallest values. These can be divided in two groups:

General extreme value distributions GEV, or EV-1, EV-2 and EV-3, and

1. Generalised Pareto distributions, also with 3 types, P-1, P-2 and P-3.

The GEV distributions and the generalised Pareto distributions are related. The first group is generally
applicable to annual maximum or annual minimum series, whereas the Pareto distributions are often
used to model exceedance series, i.e. peaks exceeding a threshold value. Though any of the
distributions may be applied to any of the series of extremes. There is however a distinct difference in
the interpretation of the return period between extremes in a fixed interval and extremes exceeding a
threshold, though both methods are related.

It is noted that instead of the extreme value distributions also the distributions dealt with in the
previous sections may be applied to model the distribution to extremes.
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Note further that statistical distributions are generally used far beyond the observed frequency range.
It is noted, though, that the use of statistical distributions for extrapolation purposes is strongly limited
by physical features and limitations in sources and basins, neither included in the distribution or in the
data used to fit the distribution. The main difficulty is with the assumption of the independent
identically distributed random variable (‘iidrv’) and the invariability of the distribution with time. In this
respect, you are strongly advised to read the paper by V. Klemes entitled: ‘Tall tales about tails of
hydrological distributions’ in Journal of Hydrologic Engineering, Vol 5, No 3, July 2000, pages 227 –
239. As an example consider the routing of a design storm through a channel reach. The design
storms for different return periods are determined using the procedures proposed by NERC (1975).
The design storms are routed through a channel reach with an inbank capacity of 350 m3/s. Beyond
that discharge level part of the flow is transferred through the floodplain. The exceedance of the
inbank capacity occurs on average once in 30 years. Two types of flood plains are considered: a
narrow one and a wide one. The effect of the two types of flood plains on the behaviour of the
distribution function of the flood peaks, observed at the downstream end of the reach, is shown in
Figure 4.22.

Figure 4.22:
Extreme value distribution of routed
design storms

From Figure 4.22 it is observed that the frequency distribution is strongly affected by physical features
of the river, which affect discharges of various magnitudes differently. It implies that data points
gathered for the more frequent extreme events may include no information for the rare extreme
events. Hence the validity of extrapolation beyond the measured range, no matter how scientific
and/or complex the mathematical expressions may be, remains highly questionable. It should always
be verified whether physical limitations and behaviour under very wet or very dry conditions may
affect the extreme events. Blind application of extreme value distributions is always wrong.

The use of confidence bands about the frequency distribution will not help you much, as those are
based on the assumption that the used distribution is applicable to the considered case. If the
distribution is not applicable, the confidence limits will give a completely false picture of the
uncertainty in the extreme value for a particular return period. Also, the use of goodness of fit tests will
not help you in this respect and may lead you to an unjustified believe in the applicability of the
distribution.

4.6.2 General extreme value distributions

The general extreme value distributions are applicable to series with a fixed interval like annual
maximum or annual minimum series; i.e. one value per interval. Consider the extreme values (largest
Xmax and smallest Xmin) of a sample of size n. Hence, Xmax = max(X1, X2, …., Xn) and let the Xi’s be
independent and identically distributed, then:

        (4.95)

Note that the third expression stems from the independence of the Xi’s, whereas the fourth expression
is due to the identical distribution of the Xi’s. The pdf of Xmax reads:
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        (4.96)

Similarly for Xmin = min(X1, X2, …., Xn) it follows under the same assumptions of independence and
identical distribution:

        (4.97)

and the pdf of Xmin:

        (4.98)

Above expressions for Xmax and Xmin show that their distributions depend on sample size and the
parent distribution from which the sample is taken. However, it can be shown, that full details about
the parent distribution are not required to arrive at the distribution of extremes. For large n and limited
assumptions about the parent distributions three types of asymptotic distributions for extreme values
have been developed:

1. Type I: parent distribution is unbounded in the direction of the extreme and all moments of the
distribution exist (exponential type distributions), like

• Largest: normal, lognormal, exponential, gamma, Weibull

• Smallest: normal

2. Type II: parent distribution is unbounded in the direction of the extreme but not all moments exist
(Pareto type distributions):

• Largest: Cauchy, Pareto, log-gamma, Student’s t

• Smallest: Cauchy distribution

3. Type III: parent distribution is bounded in the direction of the extreme (limited distributions):

• Largest: beta

• Smallest: beta, lognormal, gamma, exponential.

The above types of extreme value distributions are often indicated as Fisher-Tippett Type I, II and III
distributions or shortly as EV-1, EV-2 and EV-3 respectively.

Asymptotic distributions for Xmax

The distributions for Xmax of the 3 distinguished types have the following forms:

• Type I distribution, largest value, for -∞ < x < ∞  and β > 0:

        (4.99)

• Type II distribution, largest value, for x ≥ x0, k < 0 and β > 0

      (4.100)

• Type III distribution, largest value, for x ≤ x0, k > 0 and β > 0

      (4.101)
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It is observed that the forms of the Type II and Type III distributions are similar, apart from sign
differences and location of boundaries relative to the variable. All above asymptotic distributions for
the largest value can be represented by the following general form of the extreme value distribution or
shortly GEV distribution (Jenkinson, 1969):

      (4.102)

Dependent on the sign of k the following cases are distinguished:

• k = 0: extreme value distribution Type I, EV-1

• k < 0: extreme value distribution Type II, EV-2

• k > 0: extreme value distribution Type III, EV-3

To arrive at the Type I distribution from (4.102) consider the Taylor series expansion of the argument
of the exponential function in the limit for k → 0:

Hence, for k = 0 with b = x0 and a = β equation (4.99) is obtained from (4.102). Equivalently, with b +
a/k = x0 and ±a/k = β equations (4.100) and (4.101) for the Type II and Type III distributions follow
from (4.102). The GEV-form is sometimes used in literature on extreme value distributions to describe
the Type II and Type III distributions, like in the Flood Studies Report (NERC, 1975). The different
type of distributions for Xmax are presented in Figure 4.23. It is observed that there is an upper limit to
Xmax in case of EV-3.

Figure 4.23:
Presentation of EV-1, EV-2 and EV-3 as
function of reduced EV-1 variate

As shown in Figure 4.24, there is a distinct difference in the skewness of the Xmax series suitable to be
modelled by one of the EV-distributions. EV-1 has a fixed skewness (= 1.14), whereas EV-2 has a
skewness > 1.14 and EV-3 a skewness < 1.14. Hence, a simple investigation of the skewness of a
series of Xmax will give a first indication of the suitability of a distribution.
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Figure 4.24:
Skewness as function of EV-parameter k

Asymptotic distributions for Xmin

From the principle of symmetry (see e.g. Kottegoda and Rosso, 1997), the asymptotic distributions for
the smallest value can be derived from the distribution of the largest value by reversing the sign and
taking the complementary probabilities. Let X denote a variate with pdf fX(x) and X* a variate whose
pdf is the mirror image of fX(x), it then follows: fX(x) = fX*(-x) and therefore: 1 - FX(x) = FX*(-x). So for
the distributions of Xmin as a function of those of Xmax it follows:

      (4.103)

Hence, the asymptotic distributions of Xmin for the 3 distinguished types read:

• Type I distribution, smallest value, for -∞ < x < ∞  and β > 0:

      (4.104)

• Type II distribution, smallest value, for x ≤ x0, k < 0 and β > 0:

      (4.105)

• Type III distribution, smallest value, for x ≥ x0, k > 0 and β > 0

      (4.106)

In hydrology, particularly Type I for largest value and Type III for smallest value are frequently used.
In the next sub-sections all types are discussed.

4.6.3 Extreme value Type 1 or Gumbel distribution

EV-1 for largest value

The Extreme Value Type I distribution for the largest value was given by equation (4.99):

        (4.99)
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The pdf is obtained by differentiating (4.99) with respect to x and reads:

      (4.107)

In view of the form, equation (4.99) is called the double exponential distribution or in honour to its
promoter the Gumbel distribution. Introducing the reduced or standardised variate Z, defined by:

      (4.108)

The standardised Gumbel distribution is obtained by observing that Z = X for x0 = 0 and
β = 1:

      (4.109)

      (4.110)

The standardised pdf and cdf are shown in Figure 4.25

Figure 4.25:
Standardised Gumbel pdf and cdf

The moment related parameters of the distribution, the mean, median, mode, variance skewness and
kurtosis are given by:

    (4.111a)

    (4.111b)

The constant γE  = 0.577216 is called Euler’s constant and can be read from mathematical tables. The
parameter x0 is seen to be a location parameter and β is a scale parameter. The skewness is fixed at
1.14 and the kurtosis is > 3, hence the pdf is more peaked than the normal distribution.
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The moments of the distribution and its related parameters can be obtained from the moment
generating function:

      (4.112)

More easily the moment related parameters for the Gumbel distribution can be obtained from the
cumulants κn of the distribution (see e.g. Abramowitz and Stegun, 1970):

      (4.113)

The function ζ(n) is the Riemann Zeta Function and is tabulated in mathematical tables. The relation
between the cumulants and the moments are:

      (4.114)

Hence:

Distribution parameters expressed in moment related parameters

From (4.111) the following relations between x0, β and µ and σ are obtained:

       (4.115)

      (4.116)

Quantiles of EV-1 for Xmax

The value for Xmax for a specified return period T, xmax(T), can be derived from (4.108) and (4.109):

      (4.117)
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In some textbooks the quantiles are determined with the aid of a frequency factor K(T):

       (4.118)

Hence:

      (4.119)

Values for K(T) for selected return periods are presented in table below:

T K(T) T K(T)

2 -0.1643 100 3.1367

5 0.7195 250 3.8535

10 1.3046 500 4.3947

25 2.0438 1000 4.9355

50 2.5923 1250 5.1096

From (4.118) it is observed that if to a given set of extremes some very low values are added the
quantile for high return periods may increase!! This stems from the fact that though µxmax may reduce
some what, σxmax will increase, since the overall variance increases. Because for large T, K(T)
becomes large, it follows that xmax(T) may be larger than before. This is a “lever” effect.

Application of EV-1 for largest value

The Gumbel distribution appears to be a suitable model for annual maximum rainfall and runoff in a
number of cases, though many a times it does not apply. A first rapid indication about the applicability
of the Gumbel distribution can be obtained from the skewness of the data set of maximum values. If
this deviates substantially from 1.14, the distribution is not suitable to model the extremes.

EV-1 for smallest value

The cdf of the EV-1 distribution for the smallest value is given by (4.104):

      (4.104)

and the pdf then reads:

       (4.120)

Introducing the reduced variate Z defined by:

      (4.121)

then the standardised cdf and pdf read:

      (4.122)

      (4.123)
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The standardised distribution is shown in Figure 4.26. From this figure it is observed that the pdf for
the smallest value is the mirror image of the pdf of the largest value around z = 0.

Figure 4.26:
Standardise EV-1 pdf and cdf for smallest
value

The moment related parameters of the distribution, the mean, median, mode, variance skewness and
kurtosis are given by:

    (4.124a)

    (4.124b)

Comparing these results with (4.111) it is observed that, apart from some changes in sign, the
components of the above formulae are similar. For the distribution parameters expressed in the
moment related parameters it now follows:

       (4.125)

      (4.126)

Quantiles of EV-1 for Xmin

In case of the smallest value we are interested in non-exceedance probability of Xmin. Let this non-
exceedance probability pbe denoted by p then the value of Xmin for a specified non-exceedance
probability p can be derived from (4.121) and (4.122):

      (4.125)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

-7 -6 -5 -4 -3 -2 -1 0 1 2 3

Reduced Variate Z

f Z
(z

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F
Z
(z

)

pdf

cdf

0minX

00minX

0E0minX

xm

3665.0x)2ln(lnxM

5772.0xx

=

β−=β−=

β−=βγ−=µ

4.5

1396.1
6

minX,2

minX,1

22
2

minX

=γ

−≈γ

βπ
=σ

σ
π

=β
6

σ+µ=σ
π

γ+µ= 45.0
6

x E0

{ }))p1ln(ln(
6

))p1ln(ln(x)p(x EminXminX0min −−+γ
π

σ+µ=−−β+=



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 311

Example 4.11 EV-1 for smallest value

Annual minimum flow series of a river have a mean and standard deviation of 500 m3/s and 200 m3/s.
Assuming that the frequency distribution of the minimum flows is EV-1, what is the probability of zero
flow?

The problem can be solved by equation (4.104), which requires values for x0 and β. From (4.125) and
(4.126) it follows for x0 and β:

Substituting the parameter values in equation (4.104) gives:

Hence, on average once every 45 years the river will run dry according to the EV-1 distribution

4.6.4 Extreme value Type 2 or Fréchet distribution

EV-2 for largest value

The cdf of the Extreme Value Type II distribution for largest value for is given by (4.100):

      (4.100)

The pdf is obtained by differentiation:

      (4.126)

Introducing the reduced variate Z according to (4.108), the following standardised forms are obtained
for the cdf and the pdf:

      (4.127)

      (4.128)

In Figures 4.27 and 4.28 the pdf and cdf of the EV-2 distribution are presented for different values of
k.
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Figure 4.27:
Pdf of EV-2 distribution for different
k values

Figure 4.28:
Cdf of EV-2 distribution for different k-
values

The moment related parameters of the distribution read:

    (4.129a)

    (4.129b)

Above expressions show that x0 is a location parameter, β a scale parameter and k a shape
parameter as the latter is the sole parameter affecting skewness. From the above figures it is
observed that the skewness decreases with increasing k.

The moment related parameters (4.129 a and b) can easily be derived from the following expression
for the rth moment about the origin in case x0 = 0 substituted in (3.30):

      (4.130)
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From (4.129) it is observed that the distribution parameters cannot analytically be expressed in the
moments of the distribution; an iterative procedure is required for this.

Quantiles of EV-2 for Xmax

The quantile xmax(T) for a given return period T follows from (4.100):

      (4.131)

Fréchet and log-Gumbel distributions

EV-2 for the largest value is also indicated as Fréchet distribution or log-Gumbel distribution. With
respect to the latter it can be shown that if (xmax-x0) has a EV-2 distribution, its logarithm Y= ln(xmax-x0)
has a Gumbel distribution with parameters a and b, as follows:

Since:

it follows:

It is observed that above expression equals (4.100) for

      (4.132)

EV-2 for smallest value

The Extreme Value Type II distribution for the smallest value is given by (4.105)

      (4.105)

The pdf can be derived by taking the derivative of (4.105) with respect to x:

      (4.133)

The moment related parameters of the distribution can easily be obtained from (4.129a and b)
knowing that the pdf is the mirror image of the pdf for the largest value:
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    (4.134a)

    (4.134b)

It appears that the EV-2 for the smallest value finds little application in hydrology and will therefore not
be discussed any further.

4.6.5 Extreme value Type 3 distribution

EV-3 for largest value

The Extreme Value Type III distribution for largest value is given by (4.101) and is defined for x ≤ x0, k
> 0 and β > 0

      (4.101)

The pdf reads:

      (4.135)

The mean, median, mode, variance and skewness are given by:

    (4.136a)

    (4.136b)

Note that these expressions are similar to those of the smallest value modelled as EV-2. Above
moment related parameters are easily obtained from the rth moment of (x0 – Xmax) which can shown to
be:

      (4.137)

To simplify the computation, note that for the higher moments x0 can be omitted, so for r > 1 one can
put x0 = 0 and use (3.30). Equation (4.137) then simplifies to:
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So:

The fact that Xmax is bounded by x0 makes that EV-3 is seldom used in hydrology for modelling the
distribution of Xmax. Its application only make sense, if there is a physical reason that limits Xmax to x0.

EV-3 for smallest value

The extreme value Type III distribution for the smallest value, for x ≥ x0, k > 0 and β > 0, has the
following form:

      (4.106)

and the pdf reads:

      (4.138)

In above equations, x0 is a location parameter, β a scale parameter and k a shape parameter.

This distribution is seen to be identical to the Weibull distribution, equation (4.84) and (4.85), by
putting 1/k = k*, where k* is the shape parameter of the Weibull distribution. Hence reference is made
to Sub-section 4.3.11 for further elaboration of this distribution. Above distribution is also called
Goodrich distribution.

The moment related parameters according to the above definition are shown here, as it corresponds
to the parameter definition adopted in HYMOS. The mean, median, mode, variance and skewness
read:

    (4.139a)

    (4.139b)

The location parameter x0 is seen to be the lower bound of the distribution. Often, the parent
distribution will have a lower bound equal to zero and so will have the EV-3 for the smallest value.
Above form with x0 is therefore often indicated as the shifted Weibull distribution.

In literature the shifted Weibull distribution is often presented as:

      (4.140)

where the resemblance with the above parameter definition is seen for: x0 = b, β = a – b and k = 1/c.
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Quantiles of EV-3 for Xmin

Since one is dealing with the smallest value, interest is in the non-exceedance probability of Xmin. If
this non-exceedance probability is denoted by p then the value of xmin for a specified non-exceedance
probability p can be derived from (4.106):

      (4.141)

Example 4.11 (continued.) EV-3 for smallest value.

Annual minimum flow series of a river have a mean and standard deviation of 500 m3/s and 200 m3/s.
Assuming that the frequency distribution of the minimum flows is EV-3, with x0 = 0, what low flow
value will not be exceeded on average once in 100 years?

The non-exceedance probability q = 0.01. To apply (4.141) k and β have to be known. The
parameters k and β are obtained as follows. Note that for x0, the coefficient of variation becomes:

From above equation it is observed that the coefficient of variation is only a function of k when    x0 =
0. By iteration one finds k = 0.37. From (4.139b) it follows for β:

With β = 564 and k = 0.37 one finds with (4.141) for the 100 year low flow:

According to the EV-1 distribution for the smallest value, which was applied to the same series in
Sub-section 4.4.3, Q = 103 m3/s has a return period of about 23 years. It follows that the two
distributions lead to very different results. In practice, the EV-3 for smallest value finds widest
application.

4.6.6 Generalised Pareto distribution

For modelling frequency distributions of extremes, particularly of partial duration series, the Pareto
distribution is often used.The cdf of the generalised Pareto distribution has the following form:

      (4.142)

Like for the Extreme Value distributions as discussed in the previous sub-sections, three types of
Pareto distributions are distinguished, which are directly related to EV-1, 2 and 3 (see next sub-
chapter):

• Type I distribution, P-1:

      (4.143)
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• Type II distribution, P-2:

      (4.144)

• Type III distribution, P-3:

      (4.145)

The pdf’s of the Pareto distributions are respectively with the validity range as defined for the cdf’s
above, for P-1:

      (4.146)

and for P-2 and P-3:

      (4.147)

Note that the P-1 distribution results as a special for θ = 0 from P-2 or P-3 similar to the EV-1
distribution resulting from GEV, see Sub-section 4.4.2. In the above distributions, x0 is a location
parameter, σ is a scale parameter and θ is a shape parameter. The mean, variance, skewness and
kurtosis of the distributions are given by:

      (4.148)

Above expressions can be derived by noticing (Metcalfe, 1997):

      (4.149)

For θ < -1/r the rth moment does not exist.

The generalised Pareto distribution in a standardised form (x0 = 0 and σ = 1) for various values of θ
are given in Figures 4.29 and 4.30.
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Figure 4.29:
Pdf of Pareto distribution for various
values of shape parameter

Figure 4.30:
Cdf of Pareto distribution for various of
shape parameter

Quantiles

The quantiles, referring to a return period of T years, follow from (4.143) to (1.145) and read:

• For Type I distribution P-1:

      (4.150)

• For Type II and III distributions, P-2, P-3:

       (4.151)

Note that above two expressions should not directly be applied to exceedance series unless the
number of data points coincide with the number of years, see next sub-section.

4.6.7 Relation between maximum and exceedance series

The GEV distributions are applicable to series with a fixed interval, e.g. a year: series of the largest or
smallest value of a variable each year, like annual maximum or minimum flows. If one considers
largest values, such a series is called an annual maximum series. Similarly, annual minimum
series can be defined.
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In contrast to this, one can also consider series of extreme values above or below a certain threshold
value, i.e. the maximum value between an upcrossing and a downcrossing or the minimum between a
downcrossing and an upcrossing, see Figure 4.31.

Figure 4.31:
Definition of partial duration or peaks
over threshold series

The series resulting from exceedance of a base or threshold value x0 thereby considering only the
maximum between an upcrossing and a downcrossing is called a partial duration series (PDS) or
peaks over threshold series, POT-series. The statistics may be developed for the exceedance of the
value relative to the base only or for the value as from zero. The latter approach will be followed here.
In a similar manner partial duration series for non-exceedance of a threshold value can be defined.
When considering largest values, if the threshold is chosen such that the number of exceedances N
of the threshold value equals the number of years n, the series is called annual exceedance series.
So, if there are n years of data, in the annual exceedance series the n largest independent peaks out
of N ≥ n are considered. To arrive at independent peaks, there should be sufficient time between
successive peaks. The physics of the process determines what is a sufficient time interval between
peaks to be independent; for flood peaks a hydrograph analysis should be carried out. The
generalised Pareto distribution is particularly suited to model the exceedance series.

Note that there is a distinct difference between annual maximum and annual exceedance series. In an
annual maximum series, for each year the maximum value is taken, no matter how low the value is
compared to the rest of the series. Therefore, the maximum in a particular year may be less than the
second or the third largest in another year, which values are considered in the annual exceedance
series if the ranking so permits. Hence the lowest ranked annual maximums are less than (or at the
most equal to) the tail values of the ranked annual exceedance series values.

The procedure to arrive at the annual exceedance series via a partial duration series and its
comparison with the annual maximum series is shown in the following figures, from a record of station
Chooz on Meuse river in northern France (data 1968-1997). The original discharge series is shown in
Figure 4.32. Next a threshold level of 400 m3/s has been assumed. The maximum values between
each upcrossing and the next downcrossing are considered. In this particular case, peaks which are
distanced ≥ 14 days apart are expected to be independent and are included in the partial duration
series, shown in Figure 4.33. This results in 72 peaks. Since there are 30 years of record, the partial
duration series has to be reduced to the 30 largest values. For this the series values are ranked in
descending order and the first 30 values are taken to form the annual exceedance series. The
threshold value for the annual exceedance series appears to 620 m3/s. The annual exceedance
series is shown in Figure 4.34. It is observed that some years do not contribute to the series, as their
peak values were less than 620 m3/s, whereas other years contribute with 2 or some even with 3
peaks. The annual maximum series is presented in Figure 4.35, together with the threshold for the
annual exceedance series. It is observed that indeed for a number of years that threshold level was
not reached. A comparison of the two series is depicted in Figure 4.36.
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Figure 4.32:
Discharge series of station chooz on
Meuse river with applied threshold Q =
400 m3/s

Figure 4.33:
Partial duration series of peaks over 400
m3/s

Figure 4.34:
Annual exceedance series Q ≥ 620 m3/s

Figure 4.35:
Annual maximum series
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Figure 4.36:
Comparison of annual maximum series
and annual exceedance series

From Figure 4.36 it is observed that the largest values in both series are the same, but the lower tail is
quite different. It follows that the annual maximum series will produce lower extremes for low return
periods, say up to T = 5 or T = 10 years return period.

Conditional exceedance probabilities

It is noted that straightforward application of fitting a frequency distribution to a partial duration or peak
over threshold series (i.e. an exceedance series) involves a conditional distribution, i.e. the
probability of an exceedance given that a threshold level x0 has been exceeded. Let this distribution of
peaks over a threshold x0 be denoted by FPOT(x). If there are Ne exceedances of x0 during Ny years,
then the average number of exceedances of x0 in one year is λ= Ne / Ny, and the average number of
peaks X>x|x>x0 per year becomes λ(1- FPOT(x)). The average number of peaks X>x|x>x0 in T years
then is λT(1- FPOT(x)). To arrive at the T year flood the average number of peaks in T year should be
1, i.e.

or:

      (4.152)

Substitution of a suitable model for FPOT(x) in (4.152) like the P-1 distribution gives for the quantile xT:

      (4.153)

It is observed that (4.153) is identical to (4.150) for λ = 1, i.e. when the number of exceedances is
equal to the number of years and then the peak over threshold series becomes the annual
exceedance series.

From exceedances to maximum

Consider again the distribution of the peaks over threshold: FPOT(x). The number of exceedances N of
the threshold in a fixed time period is a random variable, having a certain probability mass function
pN(n). It can be shown (see e.g. Kottegoda and Rosso, 1997) that the cdf of Xmax (i.e. the largest of
the exceedances) can be derived from the conditional frequency distribution FPOT(x) and pN(n) as
follows:

      (4.154)
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If pN(n), i.e. the number of exceedances, is modelled by a Poisson distribution, which is equivalent
to stating that the intervals between exceedances is exponentially distributed, then (4.154) simplifies
to:

       (4.155)

where: λ = average number of exceedances (e.g. per year).

Equation (4.155) gives a relation between the conditional exceedance distribution FPOT(x) and the
unconditional (annual) maximum distribution. If annual exceedance series are considered (i.e. on
average one exceedance per year: λ = 1) with distribution function FAE(x) it follows from (4.155):

      (4.156)

Equation (4.156) gives the relation between the annual maximum distribution Fxmax(x)=FAM(x) and the
frequency distribution of the annual exceedance series FAE(x). For the relation between the return
period of the annual exceedance series TAE and the annual maximum series TAM it follows:

      (4.157)

Equivalently

      (4.158)

From Pareto to GEV

If one substitutes in equation (4.156) for the distribution of the exceedances FAE(x) the generalised
Pareto distribution as discussed in the previous sub-section, then the distribution of Xmax will be a
GEV distribution with the same shape parameter. The cdf of the generalised Pareto distribution was
given by (4.142):

      (4.142)

Substitution in (4.156) gives:

To prove the resemblance with the GEV distribution given by equation (4.102), note that:

      (4.102)
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It follows that (4.142) and (4.102) are equivalent if:

      (4.159)

It shows that the generalised Pareto distribution and the GEV distribution are directly related, provided
that the number of exceedances per fixed period of time can be modelled by a Poisson distribution.

Example 12: Annual exceedances and annual maxima

As an example consider the exceedances shown above for Chooz on Meuse river. Since there are 72
exceedances in 30 years, the average number of exceedances per year is 72/30 = 2.4, hence λ = 2.4.
The comparison of the Poisson distribution with the observed distribution of exceedances N is
presented in Figure 4.37.

Figure 4.37:
Modelling of number of Q = 400 m3/s
threshold; Meuse river at Chooz

From Figure 4.37 it is observed that in the example case the Poisson distribution is a suitable model
for the frequency distribution of the number of exceedances per year.

Summing up

To model the distributions of exceedances, apart from Pareto type distributions, basically any other
distribution may be used, provided a proper fit is obtained. Then equation (4.155) or (4.156) is used to
compute from such a fit the return period referring to the annual maximum value, consistent with
annual maximum series. It follows:

       (4.160)

Example 12 (continued)

To show the procedure let’s follow the Meuse example presented above. The average number of
exceedances per year was λ = 2.4. The exceedances are fitted by an exponential distribution. The
average discharge of the recorded peak flows exceeding 400 m3/s is 232.5 m3/s, hence x0 = 400 and
β = 233, see Sub-section 4.5.1 Hence FPOT(x) reads:
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      (4.161)

The fit of the exponential distribution to the observed frequencies is shown in Figure 4.38.

Figure 4.38:
Fir of exponential distribution to
Meuse flow at Chooz
exceeding threshold of 400
m3/s

From equation (4.155) the cdf of the annual flood discharge then reads:

      (4.157)

The distribution of the annual maximum is seen to have a Gumbel distribution, and for the return
period it follows:

      (4.158)

If the procedure is carried out by applying the Gumbel distribution on annual maximum series for the
same period, the parameter values are instead of 604 and 233, respectively 591 and 238. A
comparison between both approaches is shown in Figure 4.39. It is observed that both procedures
give very similar results (differences <1% for 2<T≤100).

Figure 4.39:
Flow extremes as function of return
period derived from POT-series
transferred to maximum and directly
from annual maximum series.
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From (4.158) it follows for the quantile xT:

      (4.159)

According to the conditional distribution it follows from (4.153) and (4.161) with λ = 2.4 for the quantile
xT:

      (4.160)

A comparison between both approaches is seen in Figure 4.40:

Figure 4.40:
Quantiles according to POT and
Maximum, both from exceedance
series

From Figure (4.40) it is observed that there is a distinct difference between the two approaches for
return periods up to about 3 (diff > 5%), at a return periods of 10 the difference in only 1% and
reduces thereafter to insignificant differences.

4.7 Sampling distributions

4.7.1 General

A distribution parameter can be estimated from a particular sample in a number of ways. The rule or
method used to estimate a parameter is called an estimator; the value that the estimator gets, when
applied, is called an estimate. An estimate of a distribution parameter of a particular series will
assume a number of values dependent on the sample taken from the entire population. It is a random
variable itself with a particular frequency distribution. Hence, one can only speak about the true value
of a parameter in probabilistic terms. Consequently, also the quantiles computed from the frequency
distributions are random variables with a particular distribution. Many of the estimated distribution
parameters and quantiles are asymptotically normally distributed. This implies that for large sample
sizes N the estimate and the standard error fully describe the probability distribution of the statistic.
For small sample sizes the sampling distributions may, however, deviate significantly from normality.
In addition to the normal distribution important sampling distributions are the Chi-square distribution,
the Student-t distribution and the Fisher F-distribution. The normal distribution was described in detail
in Sub-section 4.4.1. The latter 3 distributions will be described in the next sub-sections.

4.7.2 Chi-squared distribution

Let Z1, Z2, Z3, …, Zν be ν independent standard normal random variables, then the Chi-squared
variable χν

2 with ν degrees of freedom is defined as:
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χν
2 = Z1

2 + Z2
2 + Z3

2 + …+ Zν
2       (4.161)

The number of degrees of freedom ν represents the number of independent or ‘free’ squares entering
into the expression. The pdf and cdf are given by (4.65) and (4.66) respectively, which with X
replaced by χ2 read:

      (4.162)

      (4.163)

The χ2 -distribution is a particular case of the gamma distribution by putting β = 2 and γ = ν/2 in
equations (4.51) and (4.52).The function fχ2

 (x) for different degrees of freedom is depicted in Figure
4.41.

Figure 4.41:
χν

2 -probability density function for
ν = 2, 4 and 10 degrees of
freedom

Moment related parameters of the distribution

The mean, mode, variance, skewness and kurtosis of the distribution of χν
2 are:

    (4.164a)

    (4.164b)

From (164b) it is observed that for large ν the skewness tends to 0 and the kurtosis becomes 3, and
the χ2 -distribution approaches the normal distribution, with N(ν, 2ν).

It is noted that the addition theorem is valid for the χ2 –distribution. This implies that a new variable
formed by χν
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distribution is often used for making statistical inference about the variance. An unbiased estimator for
the variance reads, see (2.5), with the mean estimated by (2.3):

          (2.5)

The sum term can be written as follows:

      (4.165)

When the first term of the last right-hand part is divided by σX, then one gets a sum of N standard
normal variates; if one divides the second part by the standard deviation of the mean, which is σX/√N
then one standard normal variate is obtained. Hence it follows:

      (4.166)

Substitution of (4.166) into (2.5) gives:

      (4.167)

Hence the random variable νsX
2/σX

2 has a χ2 –distribution with ν = N-1 degrees of freedom. So, the
distribution can be used to make statistical inference about the variance. The χ2 –distribution is also
used for statistical tests on the goodness of fit of a theoretical distribution function to an observed one.
This will be discussed in Chapter 6.

4.7.3 Student t distribution

The Student t-distribution results from a combination of a normal and a chi-square random variable.
Let Y and Z be independent random variables, such that Y has a χν

2 -distribution and Z a standard
normal distribution then the variable Tν is the Student t variable with ν degrees of freedom when
defined by:

                  (4.168)

The probability density function of Tν it follows:

      (4.169)

The function fT(t) for different degrees of freedom is shown in Figure 4.42.
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Figure 4.42:
Student t-distribution for ν = 2, 4
and 10 degrees of freedom

Moment related parameters of the distribution

The mean and the variance of the variable Tν are respectively:

      (4.170)

The Student t-distribution approaches a standard normal distribution when the number of degrees of
freedom becomes large. From (4.170) it is observed that the standard deviation is slightly larger than
1 particularly for small ν. Hence, the dispersion about the mean is somewhat larger than in the
standard normal case.

The sampling distribution of the sample mean when the standard deviation is estimated by (2.5) can
shown to be a t-distribution as follows. Consider the random variable:

        (4.171)

The first part of the last term is a standard normal variate, whereas the second part, which followed
from (4.167), is the root of a χ2-variate with ν = N-1 divided by ν. Hence the expression is a Tν –
variate with ν = N-1 degrees of freedom:

      (4.172)

It will be shown in the next sub-section that the t-distribution is related to the Fisher F-distribution.

4.7.4 Fisher’s F-distribution

Let X and Y de independent random variables, both distributed as χ2 with respectively ν1 and ν2

degrees of freedom, then the random variable F defined by:

      (4.173)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-4 -3 -2 -1 0 1 2 3 4

t

f T
(t

)

Student distribution
number of degrees 

of freedom
2
4

10

standard 
normal

2:for
2

1:for0

2
T

T

>ν
−ν
ν

=σ

>ν=µ

1N:withT
N/s

m

X

XX −=ν=
µ−

ν

1N:with
1

N/

m

sN/

m

N/s

m

2
X

XX

X

X

X

XX

X

XX −=ν

ν
χ











σ

µ−
=

σ











σ

µ−
=

µ−

ν

2

1

/Y

/X
F

ν
ν

=



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 329

has a so called F-distribution, which probability density function reads:

      (4.174)

With the definition of the beta function B(α,β):

      (4.175)

equation (4.174) may also be written as:

      (4.176)

The pdf is shown in Figure 4.43:

Figure 4.43:
Fisher F-probability density function
for various degrees of freedom

The F-distribution is also called the variance-ratio distribution as from the definition of the F-variable
(4.173) combined with (4.167) can be observed. Hence, if we consider m respectively n observations
from two standard normal random variables Z1 and Z2 with variances σ1

2 and σ2
2 estimated according

to (2.5) by s1
2 and s2

2 then the ratio:

      (4.177)

has an F-distribution with (m-1,n-1) degrees of freedom. The F-distribution is thus particularly suited
for variance ratio tests. From a comparison of (4.173) with (4.167) it is observed that the root of an F-
variate with (1,ν) degrees of freedom has a Student t-distribution
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5 Estimation of Statistical Parameters

5.1 General

To apply the theoretical distribution functions dealt with in the previous chapter the following steps are
required:

1. Investigate the homogeneity of the data series, subjected to frequency analysis

2. Estimate the parameters of the postulated theoretical frequency distribution

3. Test the goodness of fit of the theoretical to the observed frequency distribution

In this chapter the second step will be dealt with. The objective of representing the observed
frequency distribution by a theoretical one is to increase its mathematical tractability, and to facilitate
extrapolation. The procedure in itself is no more than curve fitting. It involves the estimation of the
parameters of a theoretical distribution function based on a sample from the population. It implies that
the sample values of the parameters are stochastic variables themselves with a frequency
distribution, called the sampling distribution as discussed in Chapter 4. The parameters can be
estimated in various ways including:

1. Graphical method, and

2. Analytical methods, like:

• Method of moments

• Maximum likelihood method

• Method of least squares

• Mixed moment-maximum likelihood method, etc.

Estimation error

The parameters estimated with the above methods differ. To compare the quality of different
estimators of a parameter, some measure of accuracy is required. The following measures are in use:

• mean square error and root mean square error

• error variance and standard error

• bias

• efficiency

• consistency

Mean square error

A measure for the quality of an estimator is the mean square error, mse. It is defined by:

          (5.1)

where φ is an estimator for Φ.

Hence, the mse is the average of the squared differences between the sample value and the true
value. Equation (5.1) can be expanded to the following expression:

])[(Emse 2Φ−φ=
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          (5.2)

Since:

          (5.3)

and:

          (5.4)

it follows that:

          (5.5)

The mean square error is seen to be the sum of two parts:

• the first term is the variance of φ, equation (5.3), i.e. the average of the squared differences
between the sample value and the expected mean value of φ based on the sample values, which
represents the  random portion of the error, and

• the second term of (5.5) is the square of the bias of φ, equation (5.4), describing the systematic
deviation of expected mean value of φ from its true value Φ, i.e. the systematic portion of the
error.

Note that if the bias in φ is zero, then mse = σφ
2. Hence, for unbiased estimators, i.e. if systematic

errors are absent, the mean square error and the variance are equivalent. If mse(φ1) < mse (φ2) then
φ1 is said to be more efficient than φ2 with respect to Φ.

Root mean square error

Instead of using the mse it is customary to work with its square root to arrive at an error measure,
which is expressed in the same units as Φ, leading to the root mean square (rms) error:

          (5.6)

Standard error

When discussing the frequency distribution of statistics like of the mean or the standard deviation, for
the standard deviation σφ the term standard error is used, e.g. standard error of the mean and
standard error of the standard deviation, etc.

          (5.7)

In Table 5.1, a summary of unbiased estimators for moment parameters is given, together with their
standard error. With respect to the latter it is assumed that the sample elements are serially
uncorrelated. If the sample elements are serially correlated a so-called effective number of data
Neff has to be applied in the expressions for the standard error in Table 5.1
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Consistency

If the probability that φ approaches Φ becomes unity if the sample becomes large then the estimator
is said to be consistent or asymptotically unbiased:

          (5.8)

To meet this requirement it is sufficient to have a zero mean square error in the limit for n→∞.

5.2 Graphical estimation

In graphical estimations, the variate under consideration is regarded as a function of the standardised
or reduced variate with known distribution. With a properly chosen probability scale a linear
relationship can be obtained between the variate and the reduced variate representing the
transformed probability of non-exceedance. Consider for this the Gumbel distribution. From (4.108) it
follows:

          (5.9)

According to the Gumbel distribution the reduced variate z is related to the non-exceedance
probability by:

        (5.10)

To arrive at an estimate for x0 and β we plot the ranked observations xi against zi by estimating the
non-exceedance probability of xi, i.e. Fi. The latter is called the plotting position of xi, i.e. the probability
to be assigned to each data point to be plotted on probability paper.  Basically, appropriate plotting
positions depend on the distribution function one wants to fit the observed distribution function to. A
number of plotting positions has been proposed, which is summarised in Table 5.4.To arrive at an
unbiased plotting position for the Gumbel distribution Gringorten’s plotting position has to be applied,
which reads:

        (5.11)

This non-exceedance frequency is transformed into the reduced variate zi by using (5.10). If the data
xi are from a Gumbel distribution then the plot of xi versus zi will produce approximately a straight line.
The slope of the line gives an estimate for the parameter β and the intercept is x0. Hence the steps
involved are as follows:

1. Rank the observations in ascending order, i = 1 is the smallest and i = N the largest

2. Compute the non-exceedance frequency Fi of xi using (5.11)

3. Transform Fi into zi using equation (5.10)

4. Plot xi versus zi and draw a straight line through the points

5. Estimate the slope of the line and the intercept at z=0 to get estimates for β and the intercept is x0

The same steps apply to other frequency distributions, though with different plotting positions.
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Parameter Estimator Standard error Remarks

Mean

N

Y
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=σ

The sampling distribution of mY is very nearly
normal for N>30, even when the population
is non-normal. In practice σY is not known
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with N-1 degrees of freedom
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Quantiles 1.  first rank the sample values in

     ascending order: y(i)<y(i+1)
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     non-exceedance probability i/(N+1)
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The denominator is derived from the pdf of Y.
If Y is normally distributed then the standard
error of the quantile is determined by the
second expression. The coefficient β
depends on the non-exceedance probability
p. For various values of p the value of β can
be obtained from Table 5.2.

Table 5.1: Estimators of sample parameters with their standard error

p 0.5 0.4/ 0.6 0.3/ 0.7 0.25/0.75 0.2/ 0.8 0.15/0.85 0.1/0.9 0.05/0.95

β 1.253 1.268 1.318 1.362 1.428 1.531 1.709 2.114

Table 5.2: β(p) for computation of σ  of quantiles if Y is normally distributed
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Example 5.1: Graphical estimation of distribution parameters

Above procedure is shown for annual maximum river flows of the Meuse river at Chooz for the period
1968-1997 presented in Example 4.12. In Table 5.3 the peak flows are presented in Column 2. In
Column 4 the ranked discharges are presented in ascending order. Subsequently the non-
exceedance frequency Fi of xi is presented in Column 5, derived from equation (5.11), whereas in the
last column the reduced variate zi referring to the non-exceedance frequency Fi.

Year Qmax Rank xi Freq zi Year Qmax Rank xi Freq zi

1 2 3 4 5 6 1 2 3 4 5 6

1968 386 1 274 0.019 -1.383 1983 1199 16 685 0.517 0.415

1969 910 2 295 0.052 -1.085 1984 675 17 690 0.550 0.514

1970 550 3 386 0.085 -0.902 1985 760 18 735 0.583 0.617

1971 274 4 406 0.118 -0.759 1986 735 19 760 0.616 0.725

1972 468 5 406 0.151 -0.635 1987 780 20 780 0.649 0.840

1973 406 6 423 0.185 -0.524 1988 660 21 785 0.683 0.963

1974 615 7 468 0.218 -0.421 1989 690 22 795 0.716 1.096

1975 295 8 491 0.251 -0.324 1990 1080 23 840 0.749 1.241

1976 795 9 550 0.284 -0.230 1991 491 24 860 0.782 1.404

1977 685 10 615 0.317 -0.138 1992 1135 25 910 0.815 1.589

1978 680 11 635 0.351 -0.047 1993 1510 26 1080 0.849 1.807

1979 785 12 642 0.384 0.043 1994 1527 27 1135 0.882 2.073

1980 635 13 660 0.417 0.134 1995 406 28 1199 0.915 2.421

1981 860 14 675 0.450 0.226 1996 642 29 1510 0.948 2.934

1982 840 15 680 0.483 0.319 1997 423 30 1527 0.981 3.976

Table 5.3: Annual maximum river flows of Meuse river at Chooz, period 1968-1997

The Columns 6 and 4 are plotted in Figure 5.1. It is observed that the points are located on a straight
line, which indicates that the Gumbel distribution is applicable to data set of annual maximum
riverflows in this case. The slope of the line is estimated at 1200/4.85 = 247 and the intercept at z = 0
is about 590 m3/s, which are the estimates for β and x0 respectively.

Figure 5.1:
Application of graphical
estimation method to annual
maximum river flows of Meuse
river at Chooz, period 1968-
1997

In Chapter 4 Example 4.12 the parameters were estimated using the maximum likelihood method
(MLM), which gave estimates for β and x0 respectively of 238 and 591 m3/s. For a 100 year return
period flood (T = 100 years, i.e. FX(x) = 1 – 1/100 = 0.99 or z = -ln(-ln(0.99))=4.60) the quantile xT=100

becomes with the two methods using (5.9):
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Graphical method: x100 = 590 + 247 x 4.60 = 1726 m3/s

MLM: x100 = 591 + 238 x 4.60 = 1686 m3/s

It is observed that the difference between the methods in this case is very small.

There is in the graphical method, however, a strong subjective element. Different analysts may obtain
different results. This method is therefore not suitable for final design calculations. Plotting of the
observed frequency distribution with the fitted one is extremely important. Before accepting a
theoretical frequency distribution to be applicable to an observed frequency distribution inspection of
the frequency plot is a must. Such a comparison gives you a visual impression about the goodness of
fit particularly at the lower and upper end of the curve, something a statistical test does not give. In
this respect it is of importance to apply the appropriate plotting position for each of the frequency
distributions to arrive at an unbiased plotting position.

Plotting positions

Defining the plotting position for each data point, when put in ascending order, by:

        (5.12)

where: Fi = non-exceedance frequency of xi ranked in ascending order

i = ith element in ranked sequence in ascending order

N = number of data in series

b = parameter dependent on type of distribution

Cunnane (1978) investigated various plotting positions that can be derived from (5.12) by assuming
an appropriate value for b. Two criteria were used:

• unbiasedness, which implies that for a large number of equally sized samples the average of the
plotted points for each i will fall on the theoretical line

• minimum variance, i.e. the variance of the plotted point about the theoretical line is minimum.

It appears that the often-used Weibull plotting position with b = 0 gives a biased result, plotting the
largest values at a too low return period. Some of his results and those of NERC (1975) are
summarised in Table 5.4.

Name of formula b distribution remarks

Hazen

Weibull

Blom

Chegodayev

Gringorten

NERC

Tukey

0.5

0

3/8

0.3

0.44

2/5

1/3

-

-

N, LN-2, LN-3, G-2 for large γ
various

EV-1, E-1, E-2, G-2

G-2, P-3

-

For i = N: T = 2N

biased

LP-3: for γ1>0 b>3/8 and γ1<0 b<3/8

Overall compromise

Compromise plotting position

Table 5.4: Plotting position formula (Cunnane, 1978; NERC, 1975)

In HYMOS the parameter b can be set to the requirement; the default value is b = 0.3.
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5.3 Parameter estimation by method of moments

The method of moments makes use of the fact that if all the moments of a frequency distribution are
known, then everything about the distribution is known. As many moments as there are parameters
are needed to define the distribution. The frequency distributions discussed in Chapter 4 contain at
maximum four parameters, hence the first four moments, generally represented by the mean,
variance, skewness and kurtosis, are at maximum required to specify the distribution and to derive the
distribution parameters. Most distributions, however, need only one, two or three parameters to be
estimated. It is to be understood that the higher the order of the moment the larger the standard error
will be.

In HYMOS the unbiased estimators for the mean, variance, skewness and kurtosis as presented by
equations (2.3), (2.5) or (2.6), (2.8) and (2.9) are used, see also Table 5.1. Substitution of the required
moments in the relations between the distribution parameters and the moments will provide the
moment estimators:

• Normal distribution: the two parameters are the mean and the standard deviation, which follow
from (2.3) and (2.6) immediately

• LN-2: equations (2.3) and (2.6) substituted in (4.28) and (4.29)

• LN-3: equations (2.3), (2.6) and (2.8) substituted in (4.31) to (4.34)

• G-2: equations (2.3) and (2.6) substituted in (4.61) and (4.62)

• P-3: equations (2.3), (2.6) and (2.8) substituted in (4.71) to (4.73)

• EV-1:equations (2.3) and (2.6) substituted in (4.115) and (4.116)

For all other distributions the method of moments is not applied in HYMOS.

Biased-unbiased

From (2.5) it is observed that the variance is estimated from:

          (2.5)

The denominator (N-1) is introduced to obtain an unbiased estimator. A straightforward estimator for
the variance would have been:

        (5.13)

The expected value of this estimator, in case the xi’s are independent, is:

        (5.14)

From equation (5.14) it is observed that although the estimator is consistent, it is biased. Hence, to
get an unbiased estimator for σX

2 the moment estimator should be multiplied by N/(N-1), which leads
to (2.5)

Remark

The method of moments provides a simple procedure to estimate distribution parameters. For small
sample sizes, say N < 30, the sample moments may differ substantially from the population values.
Particularly if third order moments are being used to estimate the parameters, the quality of the
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parameters will be poor if the sample size is small. In such cases single outliers will have a strong
effect on the parameter estimates.

Probability weighted moments and L-moments

The above method of moments is called Product Moments. The negative effects the use of higher
moments have on the parameter estimation is eliminated by making use of L-moments, which are
linear functions of probability weighted moments (PWM’s). Probability weighted moments are
generally defined by:

        (5.15)

By choosing p=1 and s=0 in (5.15) one obtains the rth PWM, which reads:

           (5.16)

Comparing this expression with the definition of moments in (3.23) it is observed that instead of
raising the variable to a power ≥ 1 now the cdf is raised to a power ≥ 1. Since the latter has values <
1, it is observed that these moments are much less sensitive for outliers, which in the case of product
moments strongly affect the moments and hence the parameters to be estimated.

L-moments are developed for order statistics. Let the XI’s be independent random variables out of a
eries of sample of size N, which are put in ascending order:

X1:N  X2:N <….<XN:N

then Xi:N is the ith largest in a random sample of N, and is known as the ith order statistic. L-moments
are used to characterize the distribution of order statistics. In practice the first four L-moments are of
importance:

        (5.17)

The first moment is seen to be the mean, the second a measure of the spread or scale of the
distribution, the third a measure of asymmetry and the fourth a measure of peakedness.
Dimensionless analogues to the skewness and kurtosis are (Metcalfe, 1997):

         (5.18)

The relation between the L-moments and parameters of a large number of distributions are presented
in a number of statistical textbooks. For some distributions they are given below (taken from Dingman,
2002):
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• Uniform distribution

        (5.19)

• Normal distribution

        (5.20)

• Gumbel

        (5.21)

So to estimate the parameters of a distribution estimates of L-moments are required. From (5.17) it is
observed that to estimate the L-moments all possible combinations of samples of size 2, 3 and 4 have
to be selected to arrive at the expected value of the various order statistics. This is a rather
cumbersome exercise. However, the L-moments can be related to the probability weighted moments
as follows:

        (5.22)

The sample estimates of the probability weighted moments follow from the ordered set of data:

        (5.23)
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Example 5.1: continued

The L-moments method is applied to the annual maximum river flows of Meuse river at Chooz. The
computation of the probability weighted moments is presented in Table 5.5. Note that first the data are
ordered. The ordered series is presented in Column 2. In Column 3 the numerical values of (i – 1)xi:N

is presented, which is the sum term in the derivation of b1; similarly the columns 4 and 5 contain the
sum-terms for the derivation of b2 and b3. The values in the columns are summed and subsequently
divided by N, N(N-1), N(N-1)(N-2) and N(N-1)(N-2)(N-3) respectively to arrive at the estimates for the
probability weighted moments b0, b1, b2 and b3, according to equation (5.23).

Rank Q-max C-b1 C-b2 C-b3

1 274

2 295 295

3 386 772 772

4 406 1217 2435 2435

5 406 1624 4872 9744

6 423 2117 8467 25402

7 468 2808 14040 56160

8 491 3437 20622 103110

9 550 4400 30800 184800

10 615 5535 44280 309960

11 635 6350 57150 457200

12 642 7066 70656 635908

13 660 7920 87120 871200

14 675 8775 105300 1158300

15 680 9520 123760 1485120

16 685 10275 143850 1870050

17 690 11040 165600 2318400

18 735 12495 199920 2998800

19 760 13680 232560 3720960

20 780 14820 266760 4534920

21 785 15700 298300 5369400

22 795 16695 333900 6344100

23 840 18480 388080 7761600

24 860 19780 435160 9138360

25 910 21840 502320 11051040

26 1080 27000 648000 14904000

27 1135 29511 737776 17706624

28 1199 32373 841698 21042450

29 1510 42270 1141295 29673680

30 1527 44295 1240273 33487375

Sum 21898 392090 8145767 177221098

Parameters b0 b1 b2 b3

729.92 450.68 334.39 269.45

Table 5.5: Annual maximum river flows of Meuse river
 at Chooz, period 1968-1997

From the probability weighted moments one can derive the L-moments, with the aid of equation (5.22)
as follows. If the estimates for λ are indicated by L then:

L1 = b0 = 729.92

L2 = 2b1 – b0 = 2x450.68 – 729.92 = 171.44

L3 = 6b2 – 6b1 + b0 = 6x334.39 – 6x450.68 + 729.92 = 32.18

L4 = 20b3 - 30b2 + 12b1 – b0 = 20x269.45 – 30x334.39 + 12x450.68 – 729.92 = 35.54
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The parameters of the Gumbel distribution can be obtained through equation (5.21):

With the product moment method one obtains for the two parameters respectively 244 and 589 and
with the MLM-method 238 and 591. Hence the 100-year flood derived with the various methods
becomes:

Product moments: 589 + 244x4.6 = 1711 m3/s

L-moments:           587 + 247x4.6 = 1723 m3/s

MLM-method:        591 + 238x4.6 = 1686 m3/s

The 100-year flood values are seen to be very close to each other. The values for the L-skewness
and L-kurtosis of 0.19 and 0.21, respectively, are close to their theoretical values of 0.17 and 0.15 for
the Gumbel distribution, which shows that the distribution is an appropriate model for the data set.
Charts have been designed where L-skewness and L-kurtosis are plotted against each other for
various distributions to guide the selection of a distribution, see also Figure 5.2.

Figure 5.2:
L-moment diagram

(source: Dingman, 2002)

Note

By definition of the probability weighted moments and by close observation of Table 5.5 it is noticed
that in the estimation of the probability weighted moments larger weight is given to the higher ranked
values in the data set. Hence, the method is biased towards the larger values, particularly when more
than 2 parameters have to be estimated. So, though the method is less sensitive to outliers than the
product moment method, its application also has its drawbacks.
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5.4 Parameter estimation by maximum likelihood method

The Maximum Likelihood method (MLM) was developed by R.A. Fisher in 1922. It is based on the
idea that the best estimators for a (set of) parameter(s) are those, which give the greatest probability
that precisely the sample series is obtained with the set of parameters. Let X be a random variable
with pdf fX(x), with parameters α1, α2, …, αk. The sample taken out of X is xi, i=1, 2, …, N. Making the
basic assumption that the sample values are independent and identically distributed, then with the
parameter set α the probability that the random variable will fall in the interval including xi is fX(xI|α)dx.
So, the joint probability of the occurrence of the sample set xi, i=1, 2, …, N is, in view of their
independence, equal to the product:

Since all dx are equal, maximising the joint probability simply implies the maximisation of the product:

        (5.24)

L is called the likelihood function. Then the best set of parameters α are those which maximise L.
Hence the estimators for the parameters α1, α2, …, αk are found from:

        (5.25)

The estimators obtained in this way are called Maximum Likelihood estimators. Instead of using the
likelihood function itself it is usually more convenient to maximise its logarithm in view of the many
distributions of the exponential type. Therefore instead of (5.25) the log-likelihood function lnL is
usually maximised:

        (5.26)

This has the advantage of replacing the products by sum-terms.

Application to lognormal distribution

The procedure will be shown for getting estimators for the lognormal-2 distribution, LN-2.

From (4.26) the likelihood function for a sample xi, i=1, 2, …, N reads:

        (5.27)

Hence, the log-likelihood function reads:

        (5.28)

       (5.29)
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From above equations the MLM estimators for µY and σY
2 become respectively:

        (5.30)

        (5.31)

From (5.30) and (5.31) it is observed that the MLM estimators are equivalent to the first moment
about the origin and the second moment about the mean of ln(x). In a similar manner for the 3-
parameter lognormal distribution the estimators for the distribution parameters can be derived,
however, at the expense of more complicated equations. As is discussed in Sub-section 5.6 mixed
moment-maximum likelihood estimators are preferred when a third parameter (generally the shift or
location parameter) is to be estimated particularly when the sample sizes are small.

For the other distribution functions the MLM procedure can also easily be developed along the same
lines as discussed for the lognormal distribution, though their solutions are sometimes cumbersome.
Reference is made to the HYMOS manual for a description of the formulas used.

5.5 Parameter estimation by method of least squares

The graphical estimation procedure explained in Subsection 5.3 by drawing a line through the data
points of the variable x and the reduced variate z can also be done applying linear regression, with z
the independent variable and x the dependent variable. The parameters then follow from a
minimisation of the sum of squared differences. Such a procedure does not suffer from subjectivity as
the graphical method does. The procedures for regression analysis are dealt with in detail in Module
37.

Example 5.1: continued

The annual maximum flows presented in column 4 of Table 5.3 are regressed against the reduced
variate z shown in column 6. From linear regression the following estimates for the parameters are
obtained (with standard error): x0 = 589 ± 10.8 and β = 250 ± 8.0, values which are very close to those
obtained from the graphical method.

Figure 5.3:
Fitting annual maximum flows
by regression on reduced
variate

If instead of Gringorten’s plotting position Weibull’s plotting position would have been used, the result
would have been: x0 = 584 ± 11.3 and β = 273 ± 9.2. The T=100 year floods from these procedures
would have been for:
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• Gringorten:  x100 = 1739 m3/s and

• Weibull:  x100 = 1840 m3/s

The difference with the MLM estimate are respectively: 3% and 9%. It is observed that the Weibull
procedure leads to considerably higher quantile values. This is due to the fact that this method
assigns a relatively low return period to the largest values. As a result, the slope of the regression line
(i.e. β) will be larger, and so will be the quantiles.

5.6 Parameter estimation by mixed moment-maximum likelihood method

For frequency distributions with a location parameter often the MLM method performs poorly
particularly when the sample series is small, like for LN-3 and P-3. In such cases estimating one
parameter from a moment relation and the rest with the MLM procedure provides much better
parameter estimators, as can be shown by means of Monte Carlo simulations.

The procedure will be shown for LN-3. For given location parameters the MLM estimators for µY and
σY

2 become similar to (5.30) and (5.31) with x replaced by x-x0 respectively:

        (5.32)

        (5.33)

Next, the first moment relation for the lognormal distribution is taken, (4.27a), to arrive at a value for
x0:

        (5.34)

The location parameter x0 is solved iteratively from a modified form of (5.34) as follows:

        (5.35)

For each value of x0 the parameters µY and σY
2 are estimated by (5.32) and (5.33). Given an initial

estimate of x0, an improved estimate is obtained by means of the Newton-Raphson method:

        (5.36)

Since µY and σY
2 are also a function of x0 it follows for the derivative g’(x0,old):

        (5.37)

To speed up the computations, in HYMOS the expected value of g’(x0,old) is calculated rather than
computing g’(x0,old) for each x0:

        (5.38)
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By substitution of (5.37) in (5.36) it follows for the improved estimate of x0:

        (5.39)

The iteration is continued till:

        (5.40)

The initial value of x0 is taken as:

        (5.41)

Similar to this mixture of moment and MLM procedures, HYMOS provides mixed moment MLM
estimators for the Pearson Type distributions. Reference is made to the HYMOS manual for the
details.

5.7 Censoring of data

In some cases one wants to eliminate data from frequency analysis either at the upper end or at the
lower end. Eliminating data from the frequency analysis at the upper end is called right censoring
and eliminating data at the lower end is called left censoring. This is illustrated in Figure 5.3.

Figure 5.4:
Left and right censoring

With censoring, the relative frequencies attached to the remaining data is left unchanged. Hence,
one performs frequency analysis on a reduced data set, but with frequency information from the
original set. So the procedure is not the same as simply eliminating data from the data set and
working with a reduced set, where the relative frequencies are determined based on the reduced
series.
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Right censoring may be required when there is evidence that the highest or a few of the highest
values are unreliable (poorly measured extremes) or do have a return period which is believed to be
much higher than one would expect based on the ordered data set. Left censoring may be required if
the lower part of the ordered data set is not representative for the physics of the phenomena, which
govern the higher part. Then, if one wants to extrapolate based on the higher values, the lower part
can be censored, thereby leaving the relative frequencies of the higher ones intact. This procedure is
often applied for analysis of river flow extremes, where the flow extremes refer to situations when the
river stays inbank for the low peaks (lower part) and enters the flood plain with strong attenuation of
the flood peaks (higher part). In such case the lower part will be steeper than the higher part (opposite
to what is shown in Figure 5.3 !!).

In HYMOS censoring is possible for the Gumbel distribution. Great care is needed in applying
censoring: there should be clear evidence that censoring is required.

5.8 Quantile uncertainty and confidence limits

Quantile uncertainty

The estimates for the distribution parameters involve estimation errors, and hence the same applies
for the quantiles derived from it. The parameter uncertainties have to be translated to the uncertainty
in the estimate of the quantile. The estimation error is used to draw the confidence limits about the
estimated quantiles to indicate the likely range of the true value of the quantile. The procedure to
derive the confidence limits will be illustrated for the quantile of a normally distributed random
variable. From (4.23) the quantile xp is given by:

xp = µX + σX.zp         (5.42)

where: zp = standard normal deviate corresponding to a non-exceedance probability p. The quantile is
estimated by:

xp = mX + sX.zp         (5.43)

The parameters m and s are estimated by (2.3) and (2.6) respectively. The estimation variance of the
quantile follows from:

var(xe,p) = var (mX + sX.zp) = var(mX) + zP
2 var (sX) + 2 cov(mX,sX)         (5.44)

Since var (mX) = σX
 2/N,  var (sX) ≈ σX

2/(2N) (see Table 5.1) and for a normally distributed variable
cov(mX, sX) = 0, the variance of xp becomes approximately:

        (5.45)

Hence with σX replaced by sX, the standard error of the quantile follows from:

        (5.46)

The 100(1-α)% confidence limits for xp then read:
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The confidence limits express that the true quantile xp falls within the interval xp,LCL and xp,UCL with a
confidence of 100(1-α)%. The quantity 100(1-α)% is the confidence level and α is the significance
level. From the limits shown in (5.47) it is observed that the confidence band about the quantile
increases with zp, i.e. the further away from the mean of the distribution the larger the uncertainty of
the quantile becomes. Also the effect of the number of data is apparent from (5.47); a small number of
data results in a large uncertainty for the quantile.

Figure 5.5:
Fit by normal distribution
(mX= 100, sX = 25) with 95%
confidence limits for different
length of data series

Uncertainty in the probability of the quantile

In the above we were looking at the standard error of the quantile for a given non-exceedance
probability. One can also look at the uncertainty in the non-exceedance probability for a fixed value of
xp.  From (5.42) it follows:

        (5.48)

Hence, the standard error of the reduced variate zp becomes:

        (5.49)

The reduced variate zp is approximately normally distributed with N(zp, σzp). Hence, the confidence
interval for p at a significance level α becomes PLCL = FN(zp – z1-α/2.σzp) and PUCL = FN(zp – z1-α/2.σzp),
where FN  is the standard normal distribution function. The standard error  σp of p for fixed xp then
becomes:

        (5.50)

Example 5.2: Annual rainfall Vagharoli

Annual rainfall of station Vagharoli for the period 1978 –1997 is considered. After having tested the
homogeneity of the series, the observed frequency distribution was fitted by the normal distribution,
which should be applicable on basis of the conditions needed for a Gaussian distribution.

X

Xp
p

x
z

σ

µ−
=

X

x
z

X

x
z s

s
sbyestimated p

p

p

p
=

σ

σ
=σ

X

x
2
p

z

2
p

zpNp s

s
)

2

z
exp(

2

1
s)

2

z
exp(

2

1
)z(f p

pp 












−

π
=













−

π
≈σ≈σ



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 347

The result with HYMOS is presented in the table below. In the result first the basic statistics are
presented. From the skewness and kurtosis being close to 0 and 3 respectively it is observed that the
data are approximately normally distributed.

In the next part of the result a summary is presented of the ranked observations, including:

• In the 1st column the year number as from 1978 onward is presented for each ranked observation;
e.g. the first row has year number 10 which means that this represents the value of year (1978 –
1) +10 i.e. 1987. The observation for the year 1978 is seen to be ranked as one but highest value.

• The 2nd column shows the ranked observations.

• The 3rd column gives the non-exceedance probability of the observation according to the
observed frequency distribution, using the plotting position most appropriate for the normal
distribution. According to Table 5.4, Blom’s formula gives an unbiased plotting position for the
normal distribution. For the first row (rank 1) the following value will then be obtained:

• The 4th column gives the theoretical non-exceedance probability accepting the normal
distribution with mean m = 877.3 and standard deviation 357.5. The reduced variate then reads:

For the lowest ranked value (on the first row) it then follows:

From tables of the normal distribution one reads for z = 1.805 a non-exceedance probability of p
= 0.9645. Hence the non-exceedance probability for z = -1.805 is in view of the symmetry of the
normal distribution p1 = 1 - 0.9645 = 0.0355. Using HYMOS it is not necessary to consult a
statistical textbooks for the table of the normal distribution as it is included in the software under
the option ‘Statistical Tables’.

• The 5th column gives the return period, which is derived from the non-exceedance probability by:

The 6th column presents the standard error of the quantile xp, derived from (5.46). Since we are
discussing here observations, hence, there is no statistical uncertainty in it as such (apart from
measurement errors). But the standard error mentioned here refers to the standard error one
would have obtained for a quantile with the same value as the observation when derived from
the normal distribution. It is a necessary step to derive the uncertainty in the non-exceedance
probability presented in column 7. For the first row e.g. it then follows with (5.46):
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• The standard error of the non-exceedance probability follows from (5.50):

In the third part of the results the output from the goodness of fit tests are presented. This will be
discussed in the next chapter.

In the last part of the results for distinct return periods and non-exceedance probabilities the quantiles
are presented with their standard error and 100(1-α) = 95% confidence limits, which are also shown in
the plot of the observed distribution fitted by the normal one in Figure 5.4. The values are obtained as
follows:

• The 1st column presents the return period

• The 2nd column gives the non-exceedance probability associated with the return period in column
1

• In the 3rd column the quantile is given, which is derived from (5.43) for the reduced variate
corresponding with the non-exceedance probability; this is derived from the inverse of the
standard normal distribution. E.g. for T=100, p = 0.99, zp =2.33 and the quantile follows from:

• 

• In the 4th column the standard error of xp is given which is obtained from (5.46)., e.g. for the T=
100 year event:

• In the 5th and 6th column the lower and upper confidence limits for the quantile are given, which
are derived from (5.47) in case of 95% confidence limits. In case e.g. 90% limits are used (hence
α = 0.10 instead of 0.05) then in equation (5.47) the value 1.96 (p=1-α/2 =0.975) has to be
replaced by 1.64 (p=1-α/2=0.95), values which can be obtained from the tables of the normal
distribution or from the Statistical Tables option in HYMOS. It follows for the 100 year event:

Results by HYMOS:
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Annual rainfall Vagharoli

Period 1978 - 1997

 Fitting the normal distribution function

 Number of data     =    20
 Mean               =    877.283
 Standard deviation =    357.474
 Skewness           =      -.088
 Kurtosis           =      2.617

   Nr./year observation obs.freq. theor.freq.p theo.ret-per.  st.dev.xp st.dev.p
     10     232.000       .0309       .0355        1.04    129.6295       .0283
      5     267.000       .0802       .0439        1.05    125.3182       .0325
      9     505.000       .1296       .1488        1.17     99.2686       .0644
     18     525.000       .1790       .1622        1.19     97.4253       .0669
     15     606.000       .2284       .2240        1.29     90.7089       .0759
     14     628.000       .2778       .2428        1.32     89.1161       .0780
      7     649.580       .3272       .2621        1.36     87.6599       .0799
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The fit of the normal distribution to the observed frequency distribution is shown in Figure 5.6. The
Blom plotting position has been used to assign non-exceedance frequencies to the ranked
observations.

   Nr./year observation obs.freq. theor.freq.p theo.ret-per.  st.dev.xp st.dev.p
      4     722.000       .3765       .3320        1.50     83.6122       .0849
     11     849.400       .4259       .4689        1.88     80.0545       .0891
      3     892.000       .4753       .5164        2.07     79.9673       .0892
     16     924.000       .5247       .5520        2.23     80.2727       .0888
     20     950.000       .5741       .5806        2.38     80.7532       .0883
     19    1050.000       .6235       .6855        3.18     84.4622       .0839
      6    1110.000       .6728       .7425        3.88     87.9885       .0795
     12    1167.684       .7222       .7917        4.80     92.1776       .0740
      8    1173.000       .7716       .7959        4.90     92.5994       .0734
     13    1174.000       .8210       .7967        4.92     92.6794       .0733
      2    1197.000       .8704       .8144        5.39     94.5736       .0708
      1    1347.000       .9198       .9056       10.59    109.1187       .0513
     17    1577.000       .9691       .9748       39.76    136.5096       .0224

Results of Binomial goodness of fit test
 variate dn = max(|Fobs-Fest|)/sd=      .7833 at Fest= .7917
 prob. of exceedance P(DN>dn)    =      .4335
 number of observations          =    20

Results of Kolmogorov-Smirnov test
 variate dn = max(|Fobs-Fest|)   =      .0925
 prob. of exceedance P(DN>dn)    =      .9955

 Results of Chi-Square test
 variate = chi-square           =     1.2000
 prob. of exceedance of variate =      .2733
 number of classes              =     4
 number of observations         =    20
 degrees of freedom             =     1

  Values for distinct return periods
  Return per.  prob(xi<x) p     value x  st. dev. x   confidence intervals
                                                        lower       upper
            2      .50000     877.283      79.934     720.582    1033.985
            5      .80000    1178.082      93.013     995.740    1360.424
           10      .90000    1335.468     107.878    1123.984    1546.952
           25      .96000    1503.247     127.221    1253.844    1752.650
           50      .98000    1611.602     140.961    1335.263    1887.941
          100      .99000    1709.048     153.900    1407.343    2010.753
          250      .99600    1825.469     169.899    1492.399    2158.539
          500      .99800    1906.275     181.273    1550.908    2261.643
         1000      .99900    1982.065     192.101    1605.471    2358.660
         1250      .99920    2005.533     195.482    1622.312    2388.754
         2500      .99960    2075.895     205.685    1672.672    2479.118
         5000      .99980    2142.841     215.477    1720.421    2565.260
        10000      .99990    2206.758     224.893    1765.878    2647.638
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Figure 5.6:
Fit of normal
distribution to
annual rainfall at
Vaharoli, period
1978-1997

6 Hypothesis Testing

6.1 General

To apply the theoretical distribution functions dealt with in Chapter 5 the following steps are required:

1. Investigate the homogeneity of the data series, subjected to frequency analysis

2. Estimate the parameters of the postulated theoretical frequency distribution

3. Test the goodness of fit of the theoretical to the observed frequency distribution

In this chapter attention will be given to series homogeneity tests and goodness of fit tests. First an
overview is given of the principles of hypothesis testing.

6.2 Principles

A statistical hypothesis is an assumption about the distribution of a statistical parameter. The
assumption is stated in the null-hypothesis H0 and is tested against one or more alternatives
formulated in the alternative hypothesis H1. For easy reference the parameter under investigation is
usually presented as a standardised variate, called test statistic. Under the null-hypothesis the test
statistic has some standardised sampling distribution, e.g. a standard normal, a Student t-distribution,
etc. as discussed in Chapter 4. For the null-hypothesis to be true the value of the test statistic should
be within the acceptance region of the sampling distribution of the parameter under the null-
hypothesis. If the test statistic does not lie in the acceptance region, the null-hypothesis is rejected
and the alternative is assumed to be true. Some risk, however, is involved that we make the wrong
decision about the test:

• Type I error, i.e. rejecting H0 when it is true, and

• Type II error, i.e. accepting H0 when it is false.

The probability of making a Type I error is equal to the significance level of the test α. When a test is
performed at a 0.05 or 5% level of significance it means that there is about 5% chance that the null-
hypothesis will be rejected when it should have been accepted. This probability represents the critical
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region at the extreme end(s) of the sampling distribution under H0. Note, however, the smaller the
significance level is taken, the larger becomes the risk of making Type II error and the less is the
discriminative power of the test.

Choosing the significance level α

Consider the following hypothesis. Let Φ denote the parameter under investigation and let:

H0: Φ = Φ0, and

H1: Φ = Φ1, with Φ1 > Φ0

The estimate of Φ is φ. The hypothesis is tested by means of a one-tailed test. The decision rule of
acceptance is stated as follows:

Accept H0 if:  φ ≤ c

Reject H0 and accept H1 if:  φ > c

where c is a constant, for the time being chosen arbitrarily between  Φ0 and Φ1. To specify c the
relative positions of the pdf’s of φ are considered f0(φ|H0) and f1((φ|H1) are, see Figure 6.1.

Figure 6.1:
Definition sketch for hypothesis testing

The region φ ≤ c is called the acceptance region for H0 and, reversely, the region φ > c is called the
rejectance or critical H0 region. If H0 is true and φ ≤ c, then the right decision is made. However, if
H0 is true and φ > c then the wrong decision is made, i.e. an error of Type I. Formally:

          (6.1)

On the other hand, if H1 is true and φ ≤ c, or equivalently, accepting H0 when it is false, then a Type II
error is made. It has a probability of occurrence defined by:

          (6.2)

1-α
α

β

c
Acceptance region

of H0

Rejectance
region of H0 or
critical H0 region

ϕ

ϕ

f0(ϕ|H0)

f1(ϕ|H1)

Φ0

Φ1

∫ α=φφ=>φ=
∞

c
000 d)H|(f)trueisH|c(P)ITypeoferror(P
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∞−

c
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In production processes, the risk associated with Type I errors is called the producer’s risk and the
Type II risk the consumer’s risk. Now basically c has to be chosen such that the total loss
associated with making errors of Type I and of Type II are minimised. Hence, if Lα and Lβ are the
losses associated with errors of Type I and Type II respectively, and L is the total loss, with:

L = α(c) Lα + β(c)Lβ           (6.3)

Then c follows from the minimum of L. In practice, however, the loss functions Lα and Lβ are usually
unknown and the significance level α is chosen arbitrarily small like 0.1 or 0.05. From Figure 6.1 it
is observed that a low value of α implies a very high value of β. The test then is seen to have a very
low discriminative power; the likelihood of accepting H0, when it is false, is becoming very large. By
definition, the power of a test = 1 - β, i.e. the complement of β and it expresses the probability of
rejecting H0 when it is false, or the probability of avoiding Type II errors. In this case:

          (6.4)

If the test is two-sided with acceptance region for H0: d ≤ φ ≤ c, the power of the test is given by:

          (6.5)

If the alternative is not a single number, but can take on different values, then β becomes a function of
φ. This function β(φ) is called the operating characteristic (OC) of the test and its curve the OC-
curve. Similarly, η(φ) = 1-β(φ) is called the power function of the test.

In summary: Type I and Type II errors in testing a hypothesis Φ = Φ0 against an alternative Φ = Φ1

read:

Test hypothesis H0: Φ = Φ0

Accepted Rejected

Φ = Φ0 Correct decision

P = 1 - α
Type I error

P = αTrue state

Φ = Φ1 Type II error

P = β
Correct decision

P = 1 - β

Table 6.1: Overview of hypothesis test results

Test procedure

Generally, the following procedure is used in making statistical tests (Haan, 1977):

1. Formulate the hypothesis to be tested

2. Formulate an alternative hypothesis

3. Determine a test statistic

4. Determine the distribution of the test statistic

5. Collect data needed to calculate the test statistic

6. Determine if the calculated value of the test statistic falls in the rejection region of the distribution
of the test statistic.

Depending on the type of alternative hypothesis H1 one- or two-tailed tests are considered. This is
explained by the following example. To test the significance of serial correlation the value of the serial
correlation coefficient r is considered. The null-hypothesis reads H0: ρ = 0 against one of the following
alternatives:

∫ φφ=β−
∞

c
11 d)H|(f1

∫ ∫ φφ+φφ=β−
∞−

∞d

c
1111 d)H|(fd)H|(f1
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1. H1 : ρ > 0,  i.e. a right-sided test

2. H1 : ρ < 0,  i.e. a left-sided test

4. H1 : ρ ≠ 0,  i.e. a two-sided test

The serial correlation coefficient is estimated from:

          (6.6)

The test statistic to measure the significance of r is:

          (6.7)

Under the null-hypothesis the test statistic Tr has a Student t-distribution with ν = N-3 degrees of
freedom. Let the tests be performed at a significance level α, then H0 will not be rejected in:

1. a right-sided test, if: Tr ≤ tν,1-α

2. a left-sided test,  if: Tr ≥ tν,α

3. a two-sided test,   if: tν,α/2 ≤ Tr ≤tν,1-α/2

Since the Student distribution is symmetrical the last expression may be replaced by:

Tr ≤ tν,1-α/2            (6.8)

The latter condition is investigated when testing randomness of a series. The various options are
displayed in Figure 6.2.

Figure 6.2: Right-tailed, left-tailed and two-tailed tests

From Figure 6.2 it is observed that for the same significance level the critical values differ in a one-
tailed or a two-tailed test.
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6.3 Investigating homogeneity

Prior to fitting of theoretical distributions to observed ones, the sample series should fulfil the following
conditions:

stationarity: i.e. the properties or characteristics of the series do not vary with time;

homogeneity: i.e. all elements of a series belong to the same population;

randomness: i.e. series elements are independent.

The first two conditions are transparent and obvious. Violating the last one, while the series were
tested homogeneous, means that the effective number of data is reduced and hence the power of the
tests and the quality of the estimates. Lack of randomness may, however, have several causes; in
case of a trend there will also be serial correlation.

HYMOS includes numerous statistical tests to investigate the stationarity, homogeneity or
randomness. A number of them are parametric tests, which assume that the sample is taken from a
population with an approximately normal distribution. Non-parametric or distribution-free do not set
conditions to the distribution of the sample. Generally, this freedom affects the discriminative power of
the test negatively.

Tests included in HYMOS suitable for series inspection prior to frequency analysis comprise a.o.:

On randomness:

1. Median run test: a test for randomness by calculating the number of runs above and below the
median;

2. Turning point test: a test for randomness by calculating the number of turning points;

3. Difference sign test: a test for randomness by calculating the number of positive and negative
differences;

On correlation and trend:

1. Spearman rank correlation test: the Spearman rank correlation coefficient is computed to test
serial correlation or significance of a trend;

2. Spearman rank trend test

3. Arithmetic serial correlation coefficient: a test for serial correlation;

4. Linear trend test: a test on significance of linear trend by statistical inference on slope of trend
line;

On homogeneity:

1. Wilcoxon-Mann-Whitney U-test: a test to investigate whether two series are from the same
population;

2. Student t-test: a test on difference in the mean between two series;

3. Wilcoxon W-test: a test on difference in the mean between two series;

4. Rescaled adjusted range test: a test for series homogeneity by the rescaled adjusted range.

From each group an example will be given.
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Difference sign test

The difference-sign test counts the number of positive differences np and of negative differences nn

between successive values of series xi,(i = 1,N): x(i+1) - x(i). Let the maximum of the two be given by
Nds:

          (6.9)

For an independent stationary series of length Neff (Neff = N - zero differences) the number of negative or
positive differences is asymptotically normally distributed with N(µds,σds):

        (6.10)

The following hypothesis is considered:

H0: series xi is random, and

H1: series is not random, with no direction for the deviation of randomness; hence, a two-tailed test is
performed

The following standardised test statistic is considered:

        (6.11)

The null-hypothesis will not be rejected at a α level of significance if:

        (6.12)

where z1-α/2 is the standard normal deviate with F(z < z1-α/2) = 1-α/2. A requirement is that the
sample size has to be N ≥ 10.

Linear trend test

The slope of the trend line of series xi, (i=1,N) with time or sequence is investigated. The linear trend
equation reads:

        (6.13)

The trend parameters are given by:

         (6.14)
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where:  mX = mean of xi, i = 1, N

The following hypothesis is made:

H0: no trend, i.e. the slope of the trend line should be zero: µb2 = 0, and

H1: significant trend, i.e. µb2 ≠ 0, hence a two-tailed test is performed

The absolute value of the following standardised test statistic is computed:

        (6.15)

Under the null-hypothesis of no trend, the test statistic Tt has a Student t-distribution with ν=N-2
degrees of freedom for N ≥ 10. The null-hypothesis of zero trend will not be rejected at a significance
level α, if:

        (6.16)

where tν,1-α/2 is the Student-t variate defined by: F(t<tν,1-α/2) = 1-α/2

Student t-test and Fisher F-test

A good indicator for stationarity and homogeneity of a series is the behaviour of the mean value, for
which the t-test is appropriate. With the Student t-test differences in mean values of two series
yi,(i=1,m) and zi,(i=1,n) are investigated. In this case of frequency analysis the test is used as a split-
sample test as it will be applied to the data from the same data set xi, I = 1, N. The series X is split in
two parts Y and Z. The series Y and Z are chosen such that the first m represent Y and the last N-m
are represented by Z. Let mY and mZ denote the sample values of population means of Y and Z: µY

and µZ.

The following hypothesis is now tested:

H0: µY = µZ, and

H1: µY ≠ µZ, hence a two-tailed test is performed

The absolute value of the following standardised test statistic is therefore investigated:

        (6.17)

Under the null-hypothesis of equal population means the test statistic TS has a Student
t-distribution with ν = m+n-2 degrees of freedom for N = m + n > 10. The null-hypothesis µY = µZ will
not be rejected at a significance level α, if:

        (6.18)

where tν,1-α/2 is the Student-t variate defined by: F(t<tν,1-α/2) = 1-α/2
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The way the standard deviation sYZ is computed depends on whether the series Y and Z have the
same population variance. For this a Fisher F-test is performed on the ratio of the variances.

The following hypothesis is made:

H0: σY
2 = σZ

2, and

H1: σY
2 ≠ σZ

2, by putting the largest one on top a one-tailed test is performed.

Following test statistic is considered:

        (6.19)

Under the null-hypothesis the test statistic FS has a Fisher F-distribution with (m-1, n-1) degrees of
freedom if sY2 > sZ2, otherwise the number of degrees of freedom is (n-1, m-1). The null-hypothesis
σY2 = σZ2 will not be rejected at a significance level α, if:

        (6.20)

where fm-1,n-1,1-α is the Fisher-F variate defined by: F(f < fm-1,n-1,1-α) = 1-α.

For fitting distributions to the sample series X it is essential that the hypothesis on the mean and the
variance are both not rejected. If one of the hypotheses is rejected, the series should not be applied.

The outcome of the variance test determines in which way the standard deviation sYZ is being
estimated (Hald, 1952). The standard deviation sYZ is computed from:

1. in case of equal variances:

         (6.21)

2. in case of unequal variances:

        (6.22)

Practically, it implies that in the latter case the number of degrees of freedom ν becomes less than in
the equal variance case, so the discriminative power of the test diminishes somewhat. With respect to
the sample size it is noted that the following conditions apply: N≥10, m≥5 and n≥5.

Example 5.2:  continued: Annual rainfall Vagharoli.

The above-discussed tests have been applied to the annual rainfall series of Vagharoli available for
the period 1978-1997. In the split-sample test on the mean and the variance the series have been
split in equal parts. It is noted though, that in practice one should first inspect the time series plot of
the series to determine where the boundary between the two parts is to be put. The time series of the
annual rainfall is shown in Figure 6.3.
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Results of tests
Difference Sign Test
 Number of difference signs (=Nds)=        11
 Mean of Nds                      =     9.500
 Standard deviation of Nds        =     1.323
 Test statistic [nds](abs.value)  =     1.134
 Prob(nds.le. nds,obs    =     .872
 Hypothesis: H0: Series is random
             H1: Series is not random
             A two-tailed test is performed
             Level of significance is α 5.00 percent
             Critical value for test statistic z1-α/2 = 1.960
 Result:     H0 not rejected

 Test for Significance of Linear Trend

 Intercept parameter     (=b1)    =   871.612
 Slope parameter         (=b2)    = .5401E+00
 St.dev. of b2           (=sb2)   = .1424E+02
 St.dev. of residual     (=se)    = .3673E+03
 Test statistic [Tt]  (abs.value) =      .038
 Degrees of freedom �             =        18
 Prob(Tt.le Tt,obs    =      .515
 Hypothesis: H0: Series is random
             H1: Series is not random
             A two-tailed test is performed
             Level of significance α is  5.00 percent
             Critical value for test statistic t�,1-α/2 = 2.101

 Result:     H0 not rejected
ata Processing and Analysis January 2003 Page 358

Figure 6.3:
Annual rainfall at Vagharoli, period
1978-1997, with division for split
sample test
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Student t-Test with Welch modification

 Number of data in first set      =        10
 Number of data in second set     =        10
 Test statistic [TS] (abs.value)  =      .842
 Degrees of freedom               =        18
 Prob(t.<.[TS])                   =      .795
 Mean of first set        (mY)    =   809.458
 St.dev. of first set     (sY)    =   397.501
 Mean of second set       (mZ)    =   945.108
 St.dev. of second set    (sZ)    =   318.659
 Var. test stat.   FS = sY2/sZ2)    =     1.556

 Prob(F ≤ FS )                    =      .740
 Hypothesis: H0: Series is homogeneous
             H1: Series is not homogeneous
             A two-tailed test is performed
             Level of significance is α = 5.00 percent
             Critical value for test statistic mean t�,1-α/2 = 2.101

  Critical value for test statistic variance Fm-1,n-1,1-α  = 3.18

 Result:     H0 not rejected
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.4 Goodness of fit tests

o investigate the goodness of fit of theoretical frequency distribution to the observed one three tests
re discussed, which are standard output in the results of frequency analysis when using HYMOS,
iz:

 Chi-square goodness of fit test

 Kolmogorov-Smirnov test, and

 Binomial goodness of fit test.

Chi-square goodness of fit test

he hypothesis is that F(x) is the distribution function of a population from which the sample xi, i =
,…,N is taken. The hypothesis is tested by comparing the actual to the theoretical number of
ccurrences within given class intervals. The following procedure is followed in the test

irst, the data set is divided in k class intervals such that each class contains at least 5 values. The
lass limits are selected such that all classes have equal probability pj = 1/k = F(zj)-F(zj-1). For
xample if there are 5 classes, the upper class limits will be derived from the variate corresponding
ith the non-exceedance frequencies p = 0.20, 0.40, 0.60, 0.80 and 1.0. The interval j contains all xi

ith: Uc(j-1) < xi ≤ Uc(j), where Uc(j) is the upper class limit of class j, see Figure 6.4. The number of
ample values falling in class j is denoted by bj.
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Figure 6.4:
Definition sketch for class selection in Chi-square
goodness of fit test

Next, the number of values expected in class j according to the theoretical distribution is determined,
which number is denoted by ej. The theoretical number of values expected in any class is N/k, since
all classes have equal probability.

The following test statistic is considered:

         (6.23)

This test statistic has under the assumption of the null-hypothesis a chi-squared distribution with ν =
k-1-m degrees of freedom, where k = number of classes and m = number of parameters in the
theoretical distribution. Because of the choice of equal probabilities (6.23) can be simplified as
follows:

        (6.24)

The null-hypothesis will not be rejected at a significance level α if:

         (6.25)

The following number of class intervals k given N are suggested, see Table 6.2

N k N k N k

20-29

30-39

40-49

50-99

5

7

9

10

100-199

200-399

400-599

600-799

13

16

20

24

800-999

1000-1499

1500-1999

≥ 2000

27

30

35

39

Table 6.2: Recommended number of class intervals for
Ch-square goodness of fit test

Example 5.2: continued:

Annual rainfall Vagharoli. It is investigated if the null-hypothesis that the sample series of annual
rainfall fits to the normal distribution. It is observed from the results in Chapter 5 that HYMOS has
selected 4 class intervals, hence k = 4 and the upper class levels are obtained at non-exceedance
probabilities 0.25, 0.50, 0.75 and 1.00. The reduced variates for these probabilities can be obtained
from tables of the normal distribution or with the Statistical Tables option in HYMOS. The reduced
variates are respectively –0.674, 0.000, 0.674 and ∞, hence with mean = 877 and standard deviation
= 357 the class limits become 877-0.674x357, 877, 877+0.674x357 and ∞, i.e. 636, 877, 1118 and ∞.
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The number of occurrences in each class is subsequently easily obtained from the ranked rainfall
values presented in Chapter 5, Example 5.2. The results are presented in Table 6.3

Non-exc. probability of
upper class limits

Reduced variate of
upper class limits

Class intervals
expressed in mm

Number of
occurrences bj

bj
2

0.25

0.50

0.75

1.00

-0.67

0.00

0.67

∞

0- 636

637-877

878-1118

1119-∞

6

3

5

6

36

9

25

36

sum 106

Table 6.3: Number of occurrences in classes

From Table 6.3 it follows for the test statistic (6.24):

The critical value at a 5% significance level, according to the chi-squared distribution for ν = 4-1-2 = 1
degrees of freedom, is 3.84. Hence the computed value is less than the critical value. Consequently,
the null-hypothesis is not rejected at the assumed significance level, as can be observed from the
HYMOS results as well.

Kolmogorov-Smirnov test

In the Kolmogorov-Smirnov test the differences between the theoretical and observed frequency
distribution is analysed and when the difference at a particular non-exceedance frequency exceeds a
critical limit then the null-hypothesis that the sample is from the assumed theoretical distribution is
rejected.

Let the observed frequency distribution be denoted by SN(x) and is defined by:

        (6.26)

where x1 and xN are respectively the smallest and largest elements of the sample. Now, at each
observed value xi, I = 1,N the difference between F(x), i.e. the theoretical distribution, and SN(x) is
determined. The difference has two values as SN(x) changes at each step. If these two differences
are denoted by ∂i+ and ∂i-, (see Figure 6.5) then the test statistic DN is developed as follows:

        (6.27)
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Figure 6.5:
Definition sketch Kolmogorov-Smirnov test

(adapted from NERC, 1975)

The null hypothesis is not rejected at a significance level α if DN does not exceed the critical values ∆
read from Kolmogorov-Smirnov’s table:

.          (6.28)

Critical values at the 10, 5 and 1% significance level for N ≥ 35 are respectively 1.22/√N, 1.36/√N, and
1.63/√N.

Example 5.2: continued: annual rainfall Vagharoli.

The results of the application of the Kolmogorov-Smirnov test to the annual rainfall series of Vagharoli
are presented in the table below.

It is observed from Table 6.4 that the test statistic DN = 0.0925. According to the Statistical Tables of
the Kolmogorov-Smirnov test the critical value at a 5% confidence level for N = 20 is: ∆5 = 0.29.
Hence, the observed DN is less than the critical value, so the null hypothesis that the observations are
drawn from a normal distribution with mean 877 mm and standard deviation 357 mm is not rejected.

Year nr Rainfall Blom i/N (i-1)/N F(x) d+ d- max(d+,d-)

10 232 0.031 0.05 0.00 0.0355 0.0145 0.0355 0.0355

5 267 0.080 0.10 0.05 0.0439 0.0561 -0.0061 0.0561

9 505 0.130 0.15 0.10 0.1488 0.0012 0.0488 0.0488

18 525 0.179 0.20 0.15 0.1622 0.0378 0.0122 0.0378

15 606 0.228 0.25 0.20 0.2240 0.0260 0.0240 0.0260

14 628 0.278 0.30 0.25 0.2428 0.0572 0.0072 0.0572

7 650 0.327 0.35 0.30 0.2621 0.0879 0.0379 0.0879

4 722 0.377 0.40 0.35 0.3320 0.0680 -0.0180 0.0680

11 849 0.426 0.45 0.40 0.4689 -0.0189 0.0689 0.0689

3 892 0.475 0.50 0.45 0.5164 -0.0164 0.0664 0.0664

16 924 0.525 0.55 0.50 0.5520 -0.0020 0.0520 0.0520

20 950 0.574 0.60 0.55 0.5806 0.0194 0.0306 0.0306

19 1050 0.624 0.65 0.60 0.6855 -0.0355 0.0855 0.0855

6 1110 0.673 0.70 0.65 0.7425 -0.0425 0.0925 0.0925

12 1168 0.722 0.75 0.70 0.7917 -0.0417 0.0917 0.0917

8 1173 0.772 0.80 0.75 0.7959 0.0041 0.0459 0.0459

13 1174 0.821 0.85 0.80 0.7967 0.0533 -0.0033 0.0533

2 1197 0.870 0.90 0.85 0.8144 0.0856 -0.0356 0.0856

1 1347 0.920 0.95 0.90 0.9056 0.0444 0.0056 0.0444

∂i
-

∂I
+

F(x)
SN(x)

p
ro

b
a

b
il

it
y

x

i/N

(i-1)/N

α∆<ND



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 363

Year nr Rainfall Blom i/N (i-1)/N F(x) d+ d- max(d+,d-)

17 1577 0.969 1.00 0.95 0.9748 0.0252 0.0248 0.0252

Max 0.0925

Table 6.4: Kolmogorov-Smirnov test on annual rainfall

Binomial goodness of fit test

A third goodness of fit test is based on the fact that, when the observed and the theoretical distribution
functions, respectively F1(x) and F2(x), are from the same distribution, then the standardised variate
DB, defined by:

         (6.29)

is approximately normally distributed with N(0,1). Hence, the null-hypothesis is not rejected at a α %
significance level if:

        (6.30)

The test is used in the range where:

N F2(x){1- F2(x)} > 1         (6.31)

This criterion generally means that the tails of the frequency distribution are not subjected to the test.

Example 5.2 continued: annual rainfall Vagharoli. The results of the test are displayed in Table
6.5

Nr./year observation F1(x) F2(x) sB DB criterion

10 232 0.0343 0.0355 0.0414 0.0290 0.6848

5 267 0.0833 0.0439 0.0458 0.8601 0.8395

9 505 0.1324 0.1488 0.0796 0.2061 2.5332

18 525 0.1814 0.1622 0.0824 0.2329 2.7178

15 606 0.2304 0.2240 0.0932 0.0686 3.4765

14 628 0.2794 0.2428 0.0959 0.3817 3.6770

7 650 0.3284 0.2621 0.0983 0.6742 3.8681

4 722 0.3775 0.3320 0.1053 0.4321 4.4355

11 849 0.4265 0.4689 0.1116 0.3800 4.9807

3 892 0.4755 0.5164 0.1117 0.3660 4.9946

16 924 0.5245 0.5520 0.1112 0.2473 4.9459

20 950 0.5735 0.5806 0.1103 0.0643 4.8701

19 1050 0.6225 0.6855 0.1038 0.6068 4.3118

6 1110 0.6716 0.7425 0.0978 0.7251 3.8239

12 1168 0.7206 0.7917 0.0908 0.7830 3.2982

8 1173 0.7696 0.7959 0.0901 0.2918 3.2489

13 1174 0.8186 0.7967 0.0900 0.2434 3.2394

2 1197 0.8676 0.8144 0.0869 0.6120 3.0231

1 1347 0.9167 0.9056 0.0654 0.1698 1.7098

17 1577 0.9657 0.9748 0.0350 0.2597 0.4913

Max 0.7830

Table 6.5: Results of binomial goodness of fit test, annual rainfall Vagharoli
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In HYMOS, the observed non-exceedance frequency distribution F1(x) is obtained from Chegodayev
plotting position, see Table 5.4. From Table 6.5 it is observed that the maximum value for DB = 0.8601
at a non-exceedance frequency = 0.0439. However, criterion (6.31), which is presented in the last
column, is not fulfilled for that non-exceedance frequency (criterion is less than 1). For the range of
data for which this criterion is fulfilled, the maximum value for DB = 0.7830 at F2(x) = 0.7917. The
critical value for DB at a 5% confidence level is 1.96, hence, according to (6.30), the null-hypothesis
that both F1(x) and F2(x) are from the same distribution is not rejected.



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 365

ANNEX 4.1 Standard normal distribution

The standard normal distribution function reads:

(A4.1.1)

The following approximation is used in HYMOS to solve FZ(z) for a given value of the standard
normal variate z:

(A4.1.2)

The coefficients in (A4.2) read:

a1 =  0.530702715

a2 = -0.726576014

a3 =  0.71070687

a4 = -0.142248368

a5 =  0.127414796

b  =  0.2316419

The absolute error in above approximation is < 7.5 x 10-8.

The equation in a slightly different form can be found in Ambramowitz et al (1970) equation
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ANNEX 4.2 Inverse of the standard normal distribution

The standard normal distribution function is given by (A4.1.1). The inverse of the standard normal
distribution is found from:

(A4.2.1)

The coefficients in (A4.2.1) read:

a1 = 2.515517

a2 = 0.802853

a3 = 0.010328

a4 = 1.432788

a5 = 0.189269

a6 = 0.001308

The absolute error in above approximation is < 4.5x10-4.

The equation can be found in Ambramowitz et al (1970) equation 26.2.23.
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ANNEX 4.3 Incomplete gamma function

The incomplete gamma function is defined by:

(A4.3.1)

To determine the non-exceedance probability for any value of z > 0 the following procedure is
used. Three options are considered dependent on the value of γ and z:

• If γ ≥ 500: then the Wilson-Hilverty transformation:

(A4.3.2)

The variable y has a standard normal distribution.

• If z ≤ γ or z ≤ 1 a rapidly converging series development is used:

(A4.3.3)

The algorithm is taken to have converged when the summation S fulfils:

• If z > γ and z > 1 a rapidly converging continued fraction development is used:

or shortly written as:
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The continued fraction S can be rewritten as:

The nth convergent of S reads:

(A4.3.5)

which is calculated using recursively:

A0 =  1 B0 =  z

A1 =  z + 1 B1 =  z(2 - γ + z)

aj  =  (j - 1)(γ - j) bj =  2j – g + z

Aj  =  bjAj-1 + ajAj-2 Bj =  bjBj-1 + ajBj-2  for:  j = 2, ……, n

The iteration is taken to have converged when:









++γ−

−γ
++γ−

−γ
++γ−

−γ
+= ......

)z6(

)3(2

)z4(

2

)z2(

1
1

z

1
S









++

+==
+ n

n

3

3

2

2

1

1

n

n
n b

a
.........

b

a

b

a

b

a
1

z

1

B

A
S

6

n

1nn 10
S

SS −− ≤
−



Operation Manual – Data Processing and Analysis (SW) Volume 8 – Part III

Data Processing and Analysis January 2003 Page 369

ANNEX 4.4 Inverse of incomplete gamma function

The above procedure is also used to arrive at the inverse of the incomplete gamma function. For
this the routine to compute the incomplete gamma function is seeded with a variate z = 2k, for k =
1, 2, …, 50. The function returns the non-exceedance probability FZ(z) for each z.

Let the required exceedance probability be denoted by P. If for a particular value of z = 2k the
function return be an FZ(z) > P, then the computation is stopped and an interpolation is made
between z = 2k-1 and 2k such that FZ(z)  - P = 0. The interpolation is repeated to arrive at a
required accuracy.
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